

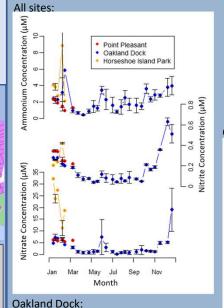
A time series of nitrogen in the Northwest Arm Halifax Harbour

Mandi Newhook (mandi.newhook@dal.ca) and Carolyn Buchwald

Objectives:

- Understand the fate of nitrogen in the Northwest Arm
- Study impacts of combined sewer overflows on Northwest Arm nitrogen content
- Study seasonality of nitrogen content in the Northwest Arm

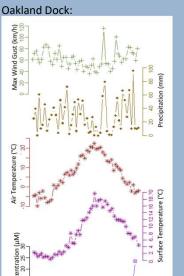
Location:


Horseshoe Island Park Oakland Dock Point Pleasant Combined Sewer Overflow Pumping Station
Pink and purple shading on map indicate areas with

wastewater treatment

Methods:

- Nitrate: Chemiluminescence detection 1
- Nitrite: Chromatographic method 2
- Ammonium: Fluorometric method₃
- Holmes et al. 1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56: 1801-1808.
- Braman RS, Hendrix SA. Nanogram nitrite and nitrate determination in environmental and biological material by vanadium (III) reduction with chemiluminescence detection. *Anal Chem.* 1989 Dec 15:61(24):2715–2718.
 Pai, Su-Cheng, Chung-Cheng Yang, and John P. Riley. 1990. Formation kinetics of the pink azo dye in the
- determination of nitrite in natural waters. *Analytica Chimica Acta* 232:345-349. http://www.sciencedirect.com.libproxy.mit.edu/science/article/B6TF4-44V43PY-
- 9D/2/031684chcffe984ch10h9ff342976aca (accessed June 27, 2007)
- 4. Map points interpreted from: https://halifaxwater.ca/sites/default/files/2019-01/2018-23_hw_busplan.pdf
- 5. https://hwc.maps.arcgis.com/apps/InformationLookup/index.html?appid=fe494fffcd144087a142dce3703afa8


Results:

20	1					1	- -	(Mr
15	-		Т	■ N	itrite	ım _	-0.8	tion (
10	+ _			A			4.	Nitrite Concentration (µM)
3	- 🕏		Å	I	т_ т	- T	0.2 0	e Conc
0					基	THE .	-0	Nitrit
	Jan	Mar	May I	Jul Month	Sep	Nov		
	0 5 10 15 20	0 0 10 15	Jan Mar	Jan Mar May	Jan Mar May Jul	Jan Mar May Jul Sep	Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate Nitrate North North North North	Nitrate Nitrate Nitrate Nitrate Nitrate Notation

Nutrient	Surface Water	Air	Maximum	Cumulative	
	Temperature	Temperature	Wind Gust	Precipitation	
	(°C)	(°C)	(km/h)	(mm)	
Nitrate	0.1201	0.0267	0.0527	0.0009	
Nitrite	0.4301	0.1689	0.0624	0.0195	
Ammonium	0.1743	0.0855	0.1254	0.0147	
Total Nitrogen	0.1675	0.0480	0.01866	0.0041	

A table of calculated R^2 values from regression analysis. Comparisons with significant p-values (less than 0.05) have the R^2 outlined in red.

Results:

- On average, Horseshoe Island has highest measured nitrogen concentrations.
- Two nitrogen peaks during the year, June and December.
- Significant relationships between surface water temperature and nitrogen content.
- No significant relationship between precipitation or wind and nitrogen content.

Conclusions:

- Longer flushing time at Horseshoe Island leads to nitrogen buildup.
- Suggests combined sewer overflows are not significant source of nitrogen to the Northwest Arm, more study needed.
- June nitrogen spike requires more study to determine cause.
- December nitrogen spike due to decreased biological uptake due to slow phytoplankton and bacteria growth and cold temperatures.