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Abstract

We use output from a 1/12o eddy-resolving model of the North Atlantic Ocean to estimate values for

the thickness diffusivity, κ, appropriate to the Gent and McWilliams parameterization. Three different

procedures are used to remove a rotational flux prior to the estimation of the thickness diffusivity.

Using the raw fluxes (no rotational flux removed), large negatives values (exceeding −5000 m2/s)

of κ are diagnosed, particularly in the Gulf Stream region and in the equatorial Atlantic and large

positive values (exceeding 5000m2/s) in the subtropical gyre. Removing a rotational flux based on

the suggestion of Marshall and Shutts (1981) leads to reduction of both the negative and positive

values. Removing a rotational flux based on the more general theory of Medvedev and Greatbatch

(2004) reduces the regions with negative κ, but large positive values for κ exceeding 5000 m2/s

are still found in the subtropical gyre. We also estimate the rotational flux using an optimization

technique. In this case, the absolute value of κ is reduced almost everywhere by construction, but

at the expense of increasing the region where negative values are diagnosed. The regions where κ is

negative consistently correspond with regions where eddies are acting to increase, rather than decrease

(as in baroclinic instability) the mean available potential energy. Therefore, negative values of κ are

physically justified and should be implemented in parameterizations.

The theoretical development also reveals a previously neglected component (ν) of the bolus velocity

associated with the horizontal flux of buoyancy along, rather than across the mean buoyancy contours.

All the estimates show a similar large–scale pattern for ν. It can be interpreted as a streamfunction

for eddy–induced advection rather than diffusion of mean isopycnal layer thickness, or equivalently, as

advection rather than diffusion of mean stretching vorticity. Comparing ν with a mean streamfunction

shows that it is about 10% of the mean in mid–latitudes and even larger than the mean in the tropics.

1 Introduction

The parameterization for the advective effects of meso–scale activity on tracers in the ocean, as first

proposed in the literature by Gent and McWilliams (1990) (GM hereafter), is currently applied in al-

most any state–of–the–art coarse resolution general circulation ocean model. In this parameterization

a number with units of a diffusivity shows up, which has to be specified. In most models, a value

of about 1000 m2/s is used, sometimes higher in the upper ocean and lower below the thermocline.

Since it is possible to interpret the GM parameterization as an (almost Fickian) diffusion of isopycnal

layer thickness, this parameter is also called the “thickness diffusivity”. Because of the sparseness

of observations of interior meso–scale activity it appears to be difficult to estimate this parameter
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directly from available observations. On the other hand, there have been some attempts to infer the

thickness diffusivity from the synthetic data of eddy resolving general circulation models, e. g. Rix

and Willebrand (1996); Jochum (1997); Bryan et al. (1999); Nakamura and Chao (2000); Roberts

and Marshall (2000); Drijfhout and Hazeleger (2001); Peterson and Greatbatch (2001); Solovev et al.

(2002).

However, these attempts have only been partly successful even in determining the overall gross

magnitude of the thickness diffusivity in the ocean. Rix and Willebrand (1996), using 5 year averaged

moments of meso–scale activity from an eddy–permitting model of the North Atlantic suggest that

longer time series are needed to get stable estimates. Jochum (1997) using 20 year averages of eddy

fluxes from the same model came to the same conclusion. Both were only able to give a rough estimate

of a mean thickness diffusivity in the southern part of the subtropical North Atlantic thermocline,

excluding western boundary current regions.

Bryan et al. (1999) pointed out that it might be necessary to subtract (or add) rotational eddy

fluxes from the “raw” eddy fluxes to get meaningful results in terms of thickness diffusivity. Even with

perfect statistics of the meso–scale activity in the real ocean, one might still obtain incorrect results

without considering rotational fluxes, making the task of determining the value of the “real” thickness

diffusivity for use in a general circulation model very difficult.

On the other hand, several authors (Roberts and Marshall, 2000; Drijfhout and Hazeleger, 2001;

Jayne and Marotzke, 2002) perform a Helmholtz–decomposition of the eddy fluxes into divergent and

rotational parts. Using this decomposition, however, it is assumed that the part of the fluxes that

can be used for eddy parameterizations is completely irrotational, an overly restrictive assumption not

imposed, for example, in Eden et al. (2005). Moreover, the decomposition depends on the definition of

boundary conditions for divergent and rotational parts, which cannot be defined in a unique manner.

This choice for rotational fluxes remains therefore ambiguous. Nakamura and Chao (2000) try to infer

patterns of thickness diffusivity in an eddy–permitting model of the North Atlantic by considering the

divergence of the eddy fluxes only, which eliminates the problem of rotational fluxes by construction,

but yield rather noisy results and no clear sign or order of magnitude of the thickness diffusivity.

Using data from a realistic eddy–resolving model of the North Atlantic, we test two choices for the

rotational fluxes, proposed by Marshall and Shutts (1981) and a more general approach by Medvedev

and Greatbatch (2004). As an alternative to specifying a rotational flux based on theoretical consid-

erations, we also estimate rotational fluxes using minimizations with respect to the value of thickness

diffusivity, but including information about rotational fluxes. In all our estimates we show the thick-

ness diffusivity (κ), related to the horizontal eddy flux of buoyancy down the horizontal gradient of

mean density, and a new parameter (ν) related to a previously neglected component of the eddy flux
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along, rather than across, the mean density contours. We argue that this part of the flux, which is

not included in GM, might also be important for large–scale flows.

Following this introduction, we present and discuss the GM–parameterization in section 2 and show

eddy fluxes from an eddy–resolving realistic model of the North Atlantic in section 3. In section 4, we

review the rotational eddy flux choice of Marshall and Shutts (1981) and show thickness diffusivity κ

and ν using this rotational flux and using the raw eddy fluxes. In section 5, we introduce the rotational

flux of Medvedev and Greatbatch (2004) and show its consequences on κ and ν followed by section 6,

in which we introduce a minimal condition to constrain κ, ν and the rotational flux and show results

from different minimizations. The last section summarizes and discusses our conclusions.

2 A generalization of the GM–parameterization

In this section we briefly derive the GM–parameterization in the framework of the Transformed Eule-

rian Mean (Andrews and McIntyre, 1976). For simplicity, we neglect any complication of a non–linear

equation of state and use b as buoyancy with b = −g(ρ− ρ0)/ρ0. The mean buoyancy budget is given

by

b̄t + ū · ∇b̄ +∇ · F = Q̄ (1)

with buoyancy b = b̄ + b′, velocity u = ū + u′ and Q̄ the mean diabatic forcing. F = u′b′ denotes

the eddy buoyancy flux, primes deviations from a temporal mean denoted by an overbar. Now we

decompose F as

F = −K∇b̄ + B ×∇b̄ +∇× θ (2)

with a diapycnal diffusivity K = −|∇b̄|2(F − ∇ × θ) · ∇b̄ and a rotational flux given by the vector

potential θ, which drops out in the divergence of F and which therefore does not show up in Eq. (1).

Following GM, we assume for now and for the remainder of this paper, that meso–scale activity is

completely adiabatic so that K = 0. Note that this view of the effect of eddy activity in the ocean has

been recently under debate, see e.g. (Radko and Marshall, 2004; Eden et al., 2005). We also begin

by ignoring the rotational vector potential, so that θ = 0, in this section. Note, however, that we

will define certain non–zero vector potentials θ in the following sections for reasons explained below.

Since

∇ · F = ∇×B · ∇b̄ ≡ u∗ · ∇b̄ (3)

the curl of B acts like an eddy–induced, three–dimensional advection velocity u∗ which adds to the

Eulerian mean velocity ū in Eq. (1) and is often called the “bolus velocity”, while the sum of bolus

velocity and Eulerian mean velocity is sometimes called the “residual velocity”.
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The second part of the flux decomposition in Eq. (2) introduces a vector streamfunction B for the

bolus velocity u∗, which can be written as (using the gauge condition B · ∇b̄ = 0)

B = −|∇b̄|−2F ×∇b̄ = |∇b̄|−2

 v′b′ b̄z − w′b′ b̄y

w′b′ b̄x − u′b′ b̄z

u′b′ b̄y − v′b′ b̄x

 ≈ b̄−1
z

 v′b′

−u′b′

u′b′s2 − v′b′s1

 (4)

where s = (s1, s2)T = b̄−1
z ∇hb̄ denotes the isopycnal slope vector. Note that the last approximation

in Eq. (4) is valid only for |b̄z| >> |∇hb̄| (we care about this situation only and ignore complications

in e. g. a surface mixed layer).

The streamfunction B is expressed in terms of the eddy buoyancy fluxes which have to be pa-

rameterized for the use in a coarse resolution model. In the GM parameterization this is achieved by

assuming that the horizontal eddy fluxes u′
hb′ are directed down the horizontal gradient of the mean

buoyancy, i. e. u′
hb′ ≈ −κ∇̄hb, with κ > 0. Here, we express the eddy fluxes as

F h ≡ u′
hb′ = −κ∇hb̄− ν∇¬ b̄ (5)

with κ = −|∇hb̄|−2F h · ∇hb̄ and ν = −|∇hb̄|−2F h · ∇¬ b̄. The operator ∇¬ is given by ∇¬ = (− ∂
∂y , ∂

∂x)T ,

i. e. a shorthand for k×∇h ( the vector subscript ¬ shall denote anti–clockwise rotation of a horizontal

vector by 90o). Note that the flux decomposition in Eq. (5) is always possible as long as |∇hb̄| 6= 0,

while the Fickian diffusion Ansatz u′
hb′ ≈ −κ∇̄hb as used in GM is an assumption. We shall show

below, that over wide regions of the North Atlantic the along–gradient part of the fluxes, related to

ν, is as large as the cross–gradient part of the flux, related to κ. It should be noted that B and

consequently κ and ν depend on the choice of the rotational vector potential θ (which we have set to

zero for now) an issue explored below.

Using the expression Eq. (5) we obtain for the streamfunction of the bolus velocity in Eq. (4)

B = κ

 −s2

s1

0

 + ν

 −s1

−s2

s2
2 + s2

1

 (6)

while the bolus velocity u∗ itself is given by

∇×B =

 −(κs1)z

−(κs2)z

(κs1)x + (κs2)y

 +

 (νs2)z

−(νs1)z

(−νs2)x + (νs1)y

 +


∂
∂y (νs2

2 + νs2
1)

− ∂
∂x(νs2

2 + νs2
1)

0

 (7)

It is the first term on the r. h. s of equation Eq. (7) which is added in GM to the mean velocity

ū in coarse resolution models to advect tracers. The parameter κ denotes thickness diffusivity and

is usually chosen of the order of 1000 m2/s. The assumption that κ is positive ensures that the

parameterization releases available potential energy from the mean state (Gent et al., 1995).
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However, what is the meaning of the parameter ν and its related part of the bolus velocity? That

part of the bolus velocity associated with ν does not figure in the GM parameterization, and is a new

aspect of the bolus velocity, even though it emerges quite naturally from our analysis. Some insight

into the nature of the parameter ν is gained considering the averaged density perturbation (ρ) budget

in the quasi–geostrophic approximation

ρ̄t +∇h · (ūgρ̄) + Rzw̄ = −∇h · F g (8)

where the geostrophic, zero–order velocities are given by the geostrophic streamfunction ug = ∇¬Ψ,

the background stratification by R(z) and the (horizontal) eddy fluxes by F g = u′
gρ

′. In accordance

to the quasi–geostrophic approximation, we have decomposed the full density as R(z) + ρ and the

perturbation density ρ again into time average and perturbation as ρ = ρ̄+ρ′. The diabatic forcing Q

has been neglected in Eq. (8) and for F g the above flux decomposition given by Eq. (5) is used again

ρ̄t + (ūg −∇¬ν) · ∇hρ̄ + Rzw̄ = ∇h · κ∇ρ̄ (9)

The density budget Eq. (9) can be transformed into a budget of mean isopycnal layer thickness

given by h̄ = ∂
∂z

(
ρ̄+R
Rz

)
h̄t +∇¬(Ψ̄ + ν) · ∇hh̄ + w̄z = ∇h · κ∇hh̄ (10)

where we have assumed that κ and ν are independent of depth. Note that Gent et al. (1995) also need

to assume that ∂
∂zκ = 0 to relate κ to thickness diffusion in their parameterization. We see that there

is eddy–induced diffusion of mean thickness given by the κ term; therefore κ is often called thickness

diffusivity. In addition, however, there is eddy–induced advection of mean thickness related to the ν

term. Note that ν acts like a streamfunction which adds to the mean streamfunction Ψ̄ accounting for

advective eddy effects on the mean thickness. This is the meaning of the ν–related bolus velocity. This

interpretation is similar to Roberts and Marshall (2000), who consider the effect of the along–gradient

part of the eddy tracer fluxes as being akin to advection of mean tracer extrema in the horizontal

plane (compare their Fig.8).

Next we show that in the eddy variance balance of ρ, which gives the budget of (available) eddy

potential energy in the quasi–geostrophic approximation, the downgradient flux related to κ shows

up as a dissipation of eddy potential energy (as long as κ is positive) while ν does not figure in that

equation. Eddy potential energy in the quasi–geostrophic approximation is −φ̄(gRz)−1 where the

eddy variance φ̄ = ρ̄′2/2 is given by

φ̄t +∇h · uhφ = κ|∇hρ̄|2 −Rzρ′w′ (11)
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We have set again Q = 0 and have used again the flux decomposition Eq. (5). Integrating over a

closed domain, the advective terms in Eq. (11) drop out and an integral constraint on κ is left, while

ν does not figure in that equation. Therefore, there is no effect on eddy potential energy associated

with the ν–related part of the eddy fluxes which means, in turn, that there is no integral constraint

on the sign of ν as has been argued for thickness diffusivity κ.

Following Eden et al. (2005) introducing a rotational flux in the flux decomposition i. e. F g =

−κ∇hρ̄− ν∇¬ ρ̄ +∇¬θqg leads to a local definition of κ and ν as we show now. Note that the rotational

flux ∇¬θqg drops out taking the divergence in Eq. (8), but does show up in the variance equation for

φ̄. Eden et al. (2005) extended the discussion using a full hierarchy of budgets of moments of ρ′ (their

TRM-G case), which can be used to write the following local expression for κ

κ|∇hρ̄|2R−1
z = ρ′w′ − 1

2
D(ρ′2w) +

1
3!
D2(ρ′3w)− 1

4!
D3(ρ′4w) + ... (12)

with the operator D() = ∇h · ∇hρ̄|∇hρ̄|−2() and a similar expansion for the streamfunction ν. Thus,

correlations between vertical velocity and density are related to the thickness diffusivity κ. Note that

the leading term in the expression, ρ′w′, appears in the eddy potential energy budget Eq. (11) and

is usually related to baroclinic instability. We show below that in the numerical model this term is

usually negative, indicating the release of eddy potential energy by the eddies and implying positive

κ, but that regions exist where ρ′w′ is positive, indicating that eddies are acting to increase the mean

potential energy, and implying negative κ.

Note that we use the quasi–geostrophic approximation here only to connect to available potential

energy and potential vorticity (see below). Transforming the averaged density budget Eq. (1) using the

flux decomposition Eq. (5) and the continuity equation to a system using b̄ as vertical coordinate also

shows the advective nature of the parameter ν and the diffusive nature of the parameter κ. However,

to make the analogy complete one has also to assume that κ and ν are independent of depth. Thus,

for the general case, the κ and ν related fluxes are acting “like” thickness diffusion and advection but

are not identical.

A similar effect of ν as in the thickness balance shows up in the budget of quasi–geostrophic

potential vorticity q. Combining the averaged density budget with the linear, averaged first order

momentum and continuity equations given by

− βyΨ̄x − f0v̄ = −p̄x , − βyΨ̄y + f0ū = −p̄y , ∇h · ūh + w̄z = 0 (13)

yields, omitting some algebra here,

∂

∂t
q̄ +∇¬Ψ̄ · ∇hq̄ +∇¬ν · ∇hq̄s = ∇h · κ∇hq̄s (14)
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where we have again assumed that κ and ν are independent of depth. Following usual convention,

we have defined the potential vorticity as q = βy + ( f2
0

N2 Ψz)z = βy + qs. We see that while thickness

diffusion related to κ acts like diffusion of mean stretching vorticity, qs, in the potential vorticity

equation (Greatbatch and Lamb, 1990), the eddy–induced advection of thickness related to ν acts

like advection of mean stretching vorticity, where ν resembles again a streamfunction. We stress that

there is no reason to neglect the latter in a consistent eddy parameterization. An advective eddy effect

can be as important as an diffusive effect, an argument originally proposed by Gent et al. (1995). For

these reasons we diagnose and discuss the ν part as well as the downgradient κ part of the eddy fluxes

in our eddy–resolving model results.

3 Eddy fluxes in the eddy resolving model

To illustrate how well the Fickian assumption u′
hb′ ≈ −κ∇̄hb assumed by GM actually holds up, we

show u′
hb′ and b̄ in the main thermocline in an realistic eddy resolving model (1/12o) of the North

Atlantic. The horizontal resolution of this model is about 10 km at the equator decreasing to about 5

km in high latitudes. The model domain extents from 20oS to 70oN with open boundaries (Stevens,

1990) at the northern and southern boundaries and with a restoring zone in the eastern Mediterranean

Sea. There are 45 vertical geopotential levels with increasing thickness with depth, ranging from 10 m

at the surface to 250m near the maximal depth of 5500 m. The model is based on a rewritten version1

of MOM2 (Pacanowski, 1995), is similar to the one used in Eden and Böning (2002) and Brandt et al.

(2005) and identical to the one used in Dengler et al. (2004). All moments shown here are averaged

over 5 years following a spinup phase of 10 year model integration using climatological surface forcing

which is identical to the forcing used in Eden and Böning (2002) and Dengler et al. (2004).

Fig. 1 a) displays the situation in the subtropical gyre. Here, the eddy fluxes appear indeed to be

down the gradient of b̄. In contrast, Fig. 1 b) shows that in the area of the North Atlantic Current

the dominant direction of the eddy fluxes appears to be more perpendicular to ∇hb̄. Moreover, the

(smaller) downgradient part of the flux shows no clear sign as in the subtropical gyre.

However, even if the fluxes do not appear to be downgradient, this does not mean that the GM–

parameterization is incorrect. As noted at the beginning of section 2, it is possible to add (or remove)

a rotational flux θ to the eddy buoyancy fluxes. This rotational flux is not affecting the mean density

budget, but is affecting the definition of the parameter κ and ν in Eq. (5). It might be possible to

remove a rotational flux from F such that the downgradient GM parameterization remains valid. In
1The numerical code together with all configurations used in this study can be accessed at http://www.ifm.uni-

kiel.de/fb/fb1/tm/data/pers/ceden/spflame/index.html.
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the following we will test two choices for such a rotational flux coming from theoretical considerations

and also a optimization technique to determine the rotational flux.

4 Rotational eddy fluxes: Marshall and Shutts (1981)

A simple choice for rotational eddy fluxes was proposed by Marshall and Shutts (1981). They consider

the eddy buoyancy variance equation in which they assume a steady state, adiabatic flow regime and

neglect advection by the perturbation flow to obtain the simple balance

ū · ∇φ̄ + F · ∇b̄ ≈ 0 (15)

where φ̄ = b′2/2 denotes eddy buoyancy variance. They further assume that the mean flow can be

described by a quasi–geostrophic streamfunction (and hence is in the horizontal plane) and flows

parallel to the mean buoyancy (b̄) contours so that ūh = ∇¬Bm, with Bm = Bm(b̄, z)2. Using this

expression in the balance of the eddy buoyancy variance they obtain

w′b′ b̄z + (F h −
∂

∂b
(Bm)∇¬φ̄) · ∇hb̄ = 0 (16)

which motivates Marshall and Shutts (1981) to set the rotational part of the horizontal eddy flux

to F R = (∇ × θ)h = ∂
∂b(Bm)∇¬φ̄. The rotational part of the eddy fluxes (F R) cancels the effect

of the mean advection of eddy variance in Eq. (16). Note that after removing the rotational flux,

the component of the remaining part of F h in the direction of ∇hb̄ balances the production term,

propotional to w′ρ′, and determines the sign of κ, a relation we diagnose from our model results below

and which we already noted in section 2.

We define in a first attempt the rotational part of the eddy fluxes F , following Marshall and Shutts

(1981), as the projection of F perpendicular to the horizontal gradient of the eddy variance, i. e. as

F R =
∂

∂b
(Bm)∇¬φ̄ with

∂

∂b
(Bm) = −|∇hφ̄|−2u′

hb′ · ∇¬φ̄ (17)

and subtract F R from the raw fluxes F to parameterize the streamfunction B. For this choice, the

thickness diffusivity κ and ν are given by

κms = −|∇hb̄|−2(u′
hb′ − ∂

∂b
(Bm)∇¬φ̄) · ∇hb̄ (18)

νms = −|∇hb̄|−2(u′
hb′ − ∂

∂b
(Bm)∇¬φ̄) · ∇¬ b̄ (19)

2The dependency of Bm on b̄ is clear since the flow follows b̄–contours. However, this dependency on b might change
with depth, therefore Bm = Bm(b̄, z).
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where we have labelled the parameters κ and ν to indicate that they are derived using Eq. (18) and

Eq. (19).

The choice of Marshall and Shutts (1981) is supported looking again at the eddy fluxes in the

North Atlantic Current region. Fig. 2 displays the eddy fluxes F and the eddy variance φ̄ in that

region. It is indeed evident in this region with high levels of eddy variance, that a large part of the

eddy flux is circulating along contours of φ̄, consistent with the choice of Marshall and Shutts (1981).

Now we look at the actual thickness diffusivities κ and their counterpart ν (which is not included

in the GM parameterization) as diagnosed from the eddy resolving model. We start with κ and ν

calculated from the “raw” eddy fluxes, i. e. taking θ = 0, as

κraw = −|∇hb̄|−2u′
hb′ · ∇hb̄ and νraw = −|∇hb̄|−2u′

hb′ · ∇¬ b̄ (20)

where we have again labelled the parameters κ and ν to indicate that they are derived from Eq. (20).

Fig. 3 shows κraw and νraw over the whole North Atlantic in the main thermocline. In the subtropics,

distant from any boundary currents, κraw is indeed positive although very large with values exceeding

5000 m2/s, somewhat larger than the canonical value of about 1000 m2/s used in coarse resolution

models. Note that this is the region in which Rix and Willebrand (1996) estimated a thickness diffu-

sivity of about 1000 m2/s in their eddy–permitting model. It appears that higher horizontal resolution

and more vigorous eddy activity in our eddy–resolving model yields higher thickness diffusivities in

this region, using the raw eddy fluxes for the estimation of κ.

Approaching the equator, κraw remains large near the western boundary but changes its sign

several times. In the Gulf Stream region, there is also a large area with negative values less than

−5000 m2/s, followed by changes in sign further downstream in the North Atlantic Current. The

appearance of large negative values may come as a surprise, since we expect the Gulf Stream and

North Atlantic Current to be baroclinically unstable regions, where the available potential energy

of the mean state is being released, and κ in general should therefore be positive. To give insight

into this issue, Fig. 4 shows the vertical eddy buoyancy flux in the main thermocline as an indicator

for local energy transfer from mean potential energy to eddy kinetic energy by baroclinic instability

(Lorenz, 1955). Over large areas, w′b′ is negative, denoting indeed release of mean potential energy

to eddy kinetic energy, as we expect. However, in the region immediately to the south of the Gulf

Stream and further downstream, where eddies are decaying rather than being generated, and a few

degrees latitude north and south of the equator (consistent with recent analysis of eddy feedbacks on

equatorial currents by Jochum and Malanotte-Rizzoli (2004)), w′b′ is positive and very large, pointing

to the opposite mechanism. The regions with positive w′b′, i. e. regions with transfer from eddy kinetic

energy to the mean stratification, are coinciding roughly with regions of negative κraw. Thus negative
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κraw’s appear to be related to regions in which energy contained in meso–scale activity is feeding back

to the mean flow.

The picture is complemented by a look at νraw shown in Fig. 3 b). Note that νraw should vanish or

at least be small for the downgradient GM parameterization to be valid (using the raw eddy fluxes). It

is not, in fact it is of the same order of magnitude as κraw and shows large–scale gradients. A notable

feature of νraw is the tendency for it to be positive in the northern half of the subtropical gyre and

negative in the southern half of the subtropical gyre.

Eq. (10) shows that ν acts in the quasi–geostrophic approximation as a streamfunction which

adds to the mean geostrophic flow and which advects mean thickness (in contrast to diffusion of mean

thickness related to κ). Alternatively, Eq. (14) relates ν to eddy–induced advection of mean stretching

vorticity. It’s meaning is again a streamfunction for the eddy–induced advection. Fig. 5 shows an

estimate for the geostrophic streamfunction Ψm of the mean flow, simply by solving ∇2
hΨm = ∇h · ūh

using ū from the model output. The values of Ψm ranges about +/- 50000 m2/s, thus the ν–related

flow is of the order of 10% of the mean flow in our eddy–resolving model which means that there is a

significant eddy–induced part of the advection velocity. Note that assuming an uniform value of Ψm

over a layer with 1000 m thickness yields maximal transports of +/- 50 ×106m3/s = 50 Sv to which

ν would contribute by more than +/- 5Sv.

The large–scale pattern of ν, i. e. positive in the northern half of the subtropical gyre and negative

in the southern half, implies westward advection in the center of the gyre, reminiscent of westward

propagation by long, non–dispersive, baroclinic Rossby waves. Indeed, the implied advective velocity

is of similar magnitude, i. e. o(1cm/s), as the propagation speed for long, baroclinic Rossby waves.

However, north of the subtropical gyre, the eddy–induced advection tends to be eastward with the

consequence that in the Gulf Stream and North Atlantic Current region, the eddy–induced advection

is supporting the mean flow, reminiscent of eddies advected by the mean flow. In the tropical Atlantic

the pattern of ν is more complicated, but here ν and its gradients, i. e. the eddy–induced advection

of thickness, is of the same order of magnitude and sometimes even larger as Ψm and its gradients,

i. e. the mean advection.

Subtracting rotational fluxes following Marshall and Shutts (1981) before projecting the (divergent

part of the) eddy fluxes onto ∇hb̄ gives different results in terms of κ and ν. Fig. 6 shows thickness

diffusivities κms and their counterpart νms estimated from Eq. (18) and Eq. (19). First, we note that

the patterns of κ and ν are now less noisy compared to Fig. 3. In large parts of the subtropical gyre,

κms is now positive and about 1000-3000 m2/s, more comparable but still larger than the canonical

values used in coarse resolution models. On the other hand, we see still a large area of negative values

of κms in the Gulf Stream region (although with smaller magnitudes). This comes along with smaller
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values of νms than before with alternating sign in the subtropical gyre. Note that the tendency for

νms to be positive north of about 30oN and negative south of about 30oS is even clearer than before

in Fig. 3. However, approaching the equator, κms still tends to change sign and the pattern of νms

hardly changes compared to νraw. We might argue that this is due to the geostrophic assumption

in the approach by Marshall and Shutts (1981), a drawback which is relaxed using the definition for

rotational eddy fluxes of Medvedev and Greatbatch (2004).

5 Rotational eddy fluxes: Medvedev and Greatbatch (2004)

Marshall and Shutts (1981) make several assumptions (e. g. that the mean flow is parallel to the mean

buoyancy contours) and neglect several terms in the eddy variance equation (e. g. the triple correlation

term), which might play a significant role, such that the results in terms of the estimated thickness

diffusivity might be obscured. A generalization of the idea is given by Medvedev and Greatbatch

(2004). Consider again the variance equation

∇ · uφ +∇× θ · ∇b̄ = Q′b′ (21)

where, as before, we have neglected diabatic effects associated with the eddies (i. e. K = 0) and changes

in eddy variance (i. e. ∂
∂tφ = 0) and where Q′b′ corresponds to dissipation of variance. Now assume

that the rotational gauge potential has only one non–zero component chosen as θ = (0, 0, θ3)T and

decompose the horizontal advection of eddy variance into components along and across the horizontal

gradient of the mean buoyancy, i. e. uhφ = α∇hb̄ + γ∇¬ b̄ which yields

(wφ)z +∇h · α∇hb̄ +∇hγ · ∇¬ b̄−∇¬θ3 · ∇hb̄ = Q′b′ (22)

Following Medvedev and Greatbatch (2004), it is straightforward to set θ3 = −γ and the eddy variance

equation becomes

(wφ)z +∇h · α∇hb̄ = Q′b′ (23)

thus only the cross isopycnal fluxes of variance in the horizontal plane are left to balance the vertical

advection of variance (wφ)z and dissipation Q′b′ of variance in Eq. (23). The difference to Marshall

and Shutts (1981) is that no assumption about the nature of the mean flow was made, e. g. the

definition should be valid also for diabatic flows and at the equator. The thickness diffusivity κmg and

its counterpart νmg for the choice of the rotational flux potential of Medvedev and Greatbatch (2004)

are given by

κmg = −|∇hb̄|−2(u′
hb′ − (∇× θ)h) · ∇hb̄ (24)

νmg = −|∇hb̄|−2(u′
hb′ − (∇× θ)h) · ∇¬ b̄ (25)
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with

θ = (0, 0,−γ)T and γ = |∇hb̄|−2uhφ · ∇¬ b̄ and (∇× θ)h = ∇¬γ (26)

Fig. 7 shows thickness diffusivities κmg and the streamfunction νmg estimated from Eq. (24) and

Eq. (25). Now there are fewer grid points with negative values of κ in the Gulf Stream region and the

equatorial Atlantic compared to Fig. 6 and Fig. 3, although the regions with negative κmg continue

to coincide with regions in which w′b′ is negative, as we expect. On the other hand, the positive

values of κ in the subtropical North Atlantic and the eastern flank of the North Atlantic Current

have increased, exceeding now 5000 m2/s over wide regions. Interestingly, the νmg field continues

to show the asymmetry between positive (negative) values over the northern (southern) part of the

subtropical gyre. The large–scale pattern of ν is almost unaffected by different choices of the rotational

flux potential θ, while values of κ do depend on θ.

6 Optimized rotational eddy fluxes

As an alternative to specifying a rotational flux based on theoretical considerations, we now proceed

to estimate a rotational flux by minimizing numerically κ and ν and θ3 in∫
dV std(κ)−2(κ− κ0)2 + std(ν)−2(ν − ν0)2 + std(θ3)−2(θ3 − θ0)2 = min (27)

under the constraint that κ, ν and θ3 satisfy F h = −κ∇hb̄ − ν∇¬ b̄ + ∇¬θ3 using standard methods

(Wunsch, 1996). Since we try to solve an underdetermined system, there are an infinitive number

of solutions satisfying the flux decomposition, therefore deviations from a priori parameters κ0, ν0

and θ0 are minimized under the constraint that the parameters are satisfying the flux decomposition.

Furthermore, the system is weighted by specifying standard deviations in which the parameters are

allowed to vary, i. e. std(κ, ν) and std(θ3).

It is important to formulate explicitly the question asked by the minimization Eq. (27) to interpret

the answer which is obtained. We ask for a decomposition of the horizontal eddy fluxes in terms of

the parameters κ, ν and θ3, which gives minimal deviations of the parameters from a priori known

values. We do not know much about the a priori parameters. What we do know is that κ should

be positive in an integral sense, as given from the balance of available potential energy in the quasi–

geostrophic approximation, and that θ3 could be chosen using Marshall and Shutts (1981) or Medvedev

and Greatbatch (2004) as a guide.

We start by showing results of a first minimization (MINI-I) using κ0 = 2000 m2/s, ν0 = 0 and θ0 =

−γ as a priori parameters and using the weights std(κ, ν) = 1000 m2/s and std(θ3) = 10000 m3/s3.
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Note that all parameters of the different minimizations discussed here are summarized in Table 1.

That means, that we use as a priori information that κ should be similar to the canonical, constant

value used in coarse resolution models and that there are rotational eddy fluxes present in the “raw”

fluxes as given by the choice of Medvedev and Greatbatch (2004). We minimize deviations of κ from

the canonical value, implying that we search for a (more or less) positive, constant value of κ. For ν

we simply search for small values, implying that this parameter should be zero. In effect, this choice

for the a priori parameters implements some of the currently accepted knowledge about eddy fluxes.

Fig. 8 shows the results of the minimization MINI-I in terms of the optimal κ and ν. As constrained

by the minimal condition, the optimal κ is now positive over large regions of the North Atlantic. Only

in a few grid points in the Gulf Stream region and 5o north and south of the equator we find negative

values of the thickness diffusivity. Note that these regions still coincide with the regions where w′b′ is

negative. The positive values in the subtropical North Atlantic are much smaller than before in Fig. 7;

overall the optimal κ ranges between 1000 and 3000 m2/s similar to the Marshall and Shutts case.

The values of the optimal ν have much decreased as well, in general, but are still of the same order of

magnitude as κ. Note that we aimed to minimized values of ν in the solution of Eq. (27). Interestingly,

ν remains predominantly positive north of about 30oN and negative south of this latitude, as we noted

in the other cases. Indeed, this asymmetry in ν is a robust feature of our results. We take this as

evidence that the ν–related part of the bolus velocity is an important aspect of eddy fluxes.

Fig. 9 displays the optimal rotational gauge potential θ3 and also −γ, which was used to estimate

κ and ν in Fig. 7 and which serves as the a priori information for θ3 in MINI-I. While in the tropical

Atlantic, both figures are rather similar, it appears from the figure that the minimization alters the a

priori rotational gauge potential north of about 30oN. However, it is the gradient of θ3 which matters

and which does not change much in that region. Note that there is a free, constant value of θ3.

Largest gradients of similar direction and amplitude show up in both the a priori and the a posteriori

rotational potential in Fig. 9 in the Gulf Stream region und further downstream, pointing towards

strong westward rotational eddy fluxes in this region.

We show in Fig. 10 results from a second minimization (MINI-II) using the a priori parameter

κ0 = 0 while all other parameters stay the same as in MINI-I. Note that ν (and θ3, not shown) hardly

changes displaying again a similar pattern as in all figures before. By construction, values of κ are

decreasing in this minimization. In consequence, there are now larger regions with negative values of

κ. However, the magnitude of the negative values is less than before for κ in the flux decompositions

by Marshall and Shutts (1981) or Medvedev and Greatbatch (2004). Only near the coast of North

America at the Gulf Stream separation point a few values more negative than −5000 m2/s show up.

Note that the regions of negative κ still coincide with regions of positive w′b′. On the other hand,
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positive values of κ are dominating even in this flux decomposition, such that the integral constraint

on κ to be positive will be satisfied.

In a third minimization (MINI-III), we also set θ0 = 0 while all other parameters stay the same as

in MINI-II. The results in terms of κ, ν and θ3 (not shown) are very similar to MINI-II, showing that

the choice for the rotational eddy fluxes by Medvedev and Greatbatch (2004) yields similar results as

the outcome from our minimization constraint by the a priori information of zero rotational eddy flux,

pointing towards the need of rotational eddy fluxes. The minimizations show that with zero rotational

flux, κ and ν get larger (as in the raw fluxes case shown in Fig. 10).

From the similarity of the large–scale patterns in κ, ν and θ3 in the minimization and the above

sections, we conclude that the previous flux decompositions are in accordance with the results from the

minimization. This means that there are no artificially large parameters of some kind in the previous

flux decompositions. In particular, the similar patterns of ν in all results and the fact that ν does

not vanish in the minimization, denotes that ν is a fundamental aspect of eddy fluxes and is actually

needed in a consistent flux decomposition. The same holds for the rotational eddy fluxes.

7 Conclusions

Previous attempts to verify the GM parameterization for meso–scale eddy transport, and to obtain

an estimate for the thickness diffusivity, have been thwarted by the presence of large rotational eddy

tracer fluxes that have no effect on the mean buoyancy budget, but complicate the interpretation

of the individual eddy tracer fluxes. Here, we have used long term averaged output from a 1/12o

eddy–resolving model of the North Atlantic Ocean to estimate values for the thickness diffusivity, κ,

using different procedures to remove a rotational flux prior to the estimation of κ.

a) Thickness diffusivity

Using the raw fluxes (no rotational flux removed), large negatives values of κ are diagnosed, particularly

in the Gulf Stream region, further downstream in the North Atlantic Current and in the equatorial

Atlantic. These regions coincide with regions of energy transfer from eddy kinetic energy to the mean

potential energy. Removing a rotational flux based on the suggestion of Marshall and Shutts (1981)

is reducing these negative values slightly, while removing a rotational flux based on the more general

theory of Medvedev and Greatbatch (2004) leads to smaller regions of negative thickness diffusivities

and smaller magnitudes of the negative values, but they are still present.
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In the subtropical North Atlantic (positive) values for κ estimated from the raw fluxes are highest

exceeding 5000 m2/s in the main thermocline over wide areas. These values are considerably larger

compared to previous estimates by Rix and Willebrand (1996); Jochum (1997) using similar models

at lower (eddy–permitting) resolution. It appears that higher model resolution yields higher thickness

diffusivity as estimated from the raw eddy fluxes. Introducing the rotational flux potential following

Marshall and Shutts (1981) is reducing these values to 1000 − 3000 m2/s, still higher than canonical

values of 1000 m2/s used in coarse resolution models. On the other hand, for the Medvedev and

Greatbatch (2004) case, values for κ are increasing again similar to the values found for the raw fluxes

in the subtropical North Atlantic.

As an alternative to specifying a rotational flux based on theoretical considerations, we also use

an optimization technique to estimate the rotational flux similar to Rix and Willebrand (1996). In

this case, the absolute value of κ is reduced almost everywhere by construction. When we get higher

(lower) thickness diffusivities in the subtropical gyre by constraining the solution to higher (smaller)

a priori values of κ, the regions with negative values of κ get smaller (larger). However, negative κ

tends to be always present in regions where energy transfer from eddy kinetic energy to the mean

potential energy occurs.

In conclusion, all our estimates show large horizontal variations in the values of the thickness

diffusivity and consistently negative values of κ in regions where eddies are feeding the mean flow. A

constant value of 1000 m2/s for κ as widely used in non–eddy–resolving models appears therefore to

be only a rather rough first order approximation to this spatial dependence of thickness diffusivity.

We argue that a better parameterization for thickness diffusivity should take negative values of κ in

certain regions into account, although numerical restrictions on negative diffusivities might complicate

the implementation in models.

b) ν related part of the fluxes

We began by developing the theoretical basis for the GM parameterization within the framework

of the Transformed Eulerian Mean. The analysis reveals a previously neglected aspect of the bolus

velocity that is associated with the horizontal flux of buoyancy along, rather than across, the mean

buoyancy contours. This part of the flux can be interpreted as eddy–induced advection rather than

diffusion of mean isopycnal thickness (related to κ), or equivalently, as advection rather than diffusion

of mean stretching vorticity. Since ν does not figure in the balance of available potential energy, there

is no integral constraint on the sign of ν. It acts as a streamfunction for advection of mean thickness.

Comparing ν with an estimate of the mean geostrophic streamfunction shows that ν is of the order of

10% of the mean flow in mid–latitudes and on the same order of magnitude in the tropics.
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For the GM parameterization to be valid, the ν related part of the flux should be zero or small

compared to κ. In contrast, all our estimates show values of ν comparable or larger than κ. In

particular the fact that ν does not vanish in the minimization, denotes that ν is a fundamental aspect

of eddy fluxes and is actually needed for a consistent flux parameterization. We speculate that this

previously neglected aspect of eddy tracer fluxes demands attention in parameterizing impacts of

meso–scale activity on tracers in non–eddy–resolving models.
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the boundary current of the Labrador Sea. J. Phys. Oceanogr.. Submitted.

Bryan, K., J. K. Dukowicz, and R. D. Smith, 1999: On the mixing coefficient in the parameterization of bolus
velocity. J. Phys. Oceanogr., 29, 2442–2456.

Dengler, M., F. A. Schott, C. Eden, P. Brandt, J. Fischer, and R. J. Zantopp, 2004: Break–up of the Atlantic
deep western boundary current into eddies at 8oS. Nature, 432.

Drijfhout, S. S. and W. Hazeleger, 2001: Eddy mixing of potential vorticity versus thickness in an isopycnic
ocean model. J. Phys. Oceanogr., 31(2), 481–505.
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Exp. κ0 ν0 θ0 std(κ, ν) std(θ3)

MINI-I 2000 m2/s 0 m2/s −γ 1000 m2/s 10000 m3/s3

MINI-II 0 m2/s 0 m2/s −γ 1000 m2/s 10000 m3/s3

MINI-III 0 m2/s 0 m2/s 0 m3/s3 1000 m2/s 10000 m3/s3

Table 1: Parameter for the different minimizations discussed in section 6.
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a) b)

Figure 1: Horizontal eddy fluxes (u′
hb′, arrows) and mean buoyancy b̄ (shading, in m/s2) in an eddy

resolving model of the North Atlantic (1/12o resolution) in 300m depth. Shown are 5 year averages
for two different regions. u′

hb′ and b̄ are spatially averaged over 12 grid points.
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Figure 2: Horizontal eddy fluxes (u′
hb′, arrows) and eddy variance φ̄ (shading) in an eddy resolving

model of the North Atlantic (1/12o resolution) in 300m depth. Shown are 5 year averages for two
different regions. u′

hb′ and φ̄ are spatially averaged over 12 grid points.
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a) b)

Figure 3: κraw (a) and νraw (b) in m2/s calculated from Eq. (20) using the raw horizontal eddy fluxes
in 300m depth. Also shown are contours of the mean buoyancy b̄. Data are computed from 5 year
averages and u′

hb′ and b̄ are spatially averaged over 15 grid points.
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Figure 4: Vertical eddy buoyancy flux in 300m depth in kg/m3/yr. Data are computed from 5 year
averages and w′b′ is spatially averaged over 21 grid points. Also shown are contours of the mean
buoyancy b̄.
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Figure 5: The streamfunction Ψm for the mean horizontal flow in 300m depth in m2/s estimated from
∇2

hΨm = ∇h · ūh. Contour interval is 5000 m2/s.
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a) b)

Figure 6: κms (a) and νms (b) in m2/s in 300m depth estimated from horizontal eddy fluxes from
which a rotational flux following Marshall and Shutts (1981) has been removed. Data are computed
from 5 year averages and u′

hb′ and b̄ are spatially averaged over 15 grid points. Also shown are contours
of the mean buoyancy b̄.
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a) b)

Figure 7: κmg (a) and νmg (b) in m2/s in 300m depth estimated from eddy fluxes from which a
rotational flux following Medvedev and Greatbatch (2004) has been removed. Data are computed
from 5 year averages and u′

hb′ and b̄ are spatially averaged over 15 grid points. Also shown are
contours of the mean buoyancy b̄.
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Figure 8: κ (a) and ν (b) in m2/s in 300m depth estimated from eddy fluxes from which an optimized
rotational flux has been removed (exp. MINI-I, see text for details). Also shown are contours of the
mean buoyancy b̄.
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Figure 9: The optimal rotational gauge potential θ3 (a) and −γ (b) in m3/s3 in 300m depth (exp.
MINI-I, see text for details). Also shown are contours of the mean buoyancy b̄.
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Figure 10: κ (a) and ν (b) in m2/s in 300m depth estimated from eddy fluxes from which an optimized
rotational flux has been removed (exp. MINI-II, see text for details). Also shown are contours of the
mean buoyancy b̄.
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