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Abstract

New ways of interpreting eddy tracer fluxes averaged at constant height are presented and

compared with previous interpretations, in particular the Transformed Eulerian Mean (TEM) of

Andrews and McIntyre, and the Temporal Residual Mean (TRM) of McDougall and McIntosh.

The previous decompositions lead to (slightly different) residual streamfunctions, but also imply

eddy–induced diapycnal mixing that may not be physically justified. For example, the implied

diapycnal mixing is not guaranteed to vanish for adiabatic flow and can become large (compared

to the mean diabatic forcing) for weakly diabatic flow as revealed in numerical simulations.

We introduce a new, “adiabatic TEM” (TEM-A) that leads to a residual streamfunction

with zero eddy–induced diapycnal diffusion by construction, even when the instantaneous dia-

batic forcing is non-zero. This is achieved by subtracting an optimal rotational component from

the eddy tracer fluxes. This rotational flux is found from the solution of a linear minimization

problem. A variant of the method yields the “generalized TRM” (TRM-G) with eddy–induced

(or enhanced) diapycnal diffusion in the steady case only if there is a correlation between per-

turbations in the diabatic forcing and the tracer. It follows that for steady, adiabatic flow,

the eddy-induced diapycnal diffusivity is zero for both the TEM-A and TRM-G cases. In the

numerical simulations the eddy–induced diapycnal diffusivities in TRM-G are orders of magni-

tude larger than the mean diabatic forcing, but it is shown that in the steady, adiabatic limit

TEM-A and TRM-G converge.
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1 Introduction

The Boussinesq form of the conservation equation for a tracer with concentration b in the ocean

(or the atmosphere) is given by

∂b

∂t
+∇ · (ub) = Q (1)

where u denotes the instantaneous, three-dimensional velocity and Q a forcing term. However,

both the ocean and atmosphere are turbulent fluids, full of “rapidly evolving perturbations”

(eddies) on a “slowly evolving mean state”. The presence of the eddies means that the instan-

taneous tracer distribution is often of little interest; instead, it is the dynamics and evolution of

an “averaged” state which is important. This, in turn, requires the definition of an average or

filter with which to view the dynamics and evolution of the tracer field, and, in turn, determine

what is meant by “rapid”,”slow” and “mean state”.

A simple example is the zonal mean; that is b, u and Q are decomposed into zonal averages

at constant height and deviations from that average.

b̄ = (x2 − x1)
−1
∫ x2

x1

b dx , b′ = b− b̄ (2)

and analogously for u and Q. Substituting the decomposition given by Eq. 2 into the instanta-

neous tracer budget and averaging the result leads to the equation for the mean tracer b̄ given

by

∂b̄

∂t
+∇ · (ūb̄) +∇ · (u′b′) = Q̄ (3)

An immediate difficulty is presented by the “eddy tracer fluxes” given1 by u′b′. These fluxes

couple the mean tracer budget to that of the perturbations, such that the evolution of the

perturbations has to be known to understand the mean tracer equation. Of course, the solution

to this problem is thought to be given by “parameterizing” the perturbation quantities in terms

of the mean quantities. However, before parameterizing the effect of the eddy tracer fluxes, it

is necessary to understand and interpret them. Understanding and interpreting the eddy fluxes

is the focus of the present paper.

Some insight into the nature of the eddy tracer fluxes can be obtained by considering

a layered framework, in which instantaneous contours of b are taken as layer interfaces. In

1 Note that the vectors ū, u′, the operator ∇ and correspondingly the fluxes ūb̄ and u′b′ in Eq. 2 and in the
following section are two dimensional, that is their zonal component vanishes.
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the continuous limit of infinitesimal layer thickness, this is the same as using b as the vertical

coordinate2. Taking b to be potential density3 then corresponds to using “isopycnal coordinates”

(e.g. McDougall (1987)). Since the interior oceanic flow is almost adiabatic (Wüst, 1935), the

diabatic forcing Q is expected to be small in the ocean interior and to be associated with weak

diapycnal mixing. In the limit of vanishing instantaneous forcing Q, there is no instantaneous

exchange of b across layers (isopycnals) and it is easy to see that in the isopycnally-averaged

budget for b there can be no cross-isopycnal flux. Indeed, averaging in isopycnal coordinates the

eddy flux covariance u′b′ is zero by construction and the only forcing for the averaged equation

is the mean forcing (related to Q) controlling the amount of cross-isopycnal flux. Based on

these considerations, we can formulate the following statement:

i) If there is no instantaneous diabatic forcing, Q, there should be no diabatic forcing in the

mean budget for b. As a consequence, the effect of the eddy tracer fluxes must be entirely

expressed as an advective flux of the mean tracer.

However, going back to z–coordinates, the above property of the eddy fluxes is far from obvi-

ous. In fact, eddy tracer fluxes averaged at constant height (instead of at constant b) usually

show strong diapycnal components even for the steady, weakly diabatic case, suggesting ar-

tificially strong eddy-induced diapycnal mixing as we shall show below. On the other hand,

z–coordinates are convenient and simple to use for both analytical considerations and numer-

ical calculations. Therefore, an overwhelming number of analytical and numerical models are

based on z–coordinates, instead of layered or isopycnal coordinates. It is therefore regarded

as a benefit to carry over the character of eddy tracer fluxes as revealed above in the layered

framework to the mean tracer budget in z–coordinates. This is the aim of the present study.

The statement i) above is a feature of the eddy tracer flux parameterization of Gent et al.

(1995) (the so-called Gent and McWilliams (GM) parameterization). In GM, the eddy fluxes

are assumed to be adiabatic in their effect, and consequently, the parameterization is written

entirely in terms of an advective velocity. Although this is certainly a reasonable first order

approximation, Radko and Marshall (2004) have raised the possibility that eddy-induced di-

apycnal mixing, especially in association with the surface and bottom boundary layers (where

diabatic effects are relatively strong) might be important in the dynamics of the large-scale

2Assuming that b is a monotonic function of depth. See Nakamura (2001) and Nurser and Lee (2004) for a
generalization of this approach for non–monotonic functional forms of b.

3Note that we assume for simplicity an equation of state in which potential density and neutral density are
the same.
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ocean circulation. In particular, their work implies that eddy fluxes do indeed have a diabatic

component, with the implication that a parameterization of the eddy tracer flux should include

a diabatic component as well. Tandon and Garrett (1996) had earlier pointed out that the

release of available potential energy from the mean state that is implied by the GM parame-

terization must, in turn, be dissipated in some way. These authors argue that the dissipation

implies significant diapycnal mixing in association with eddies, and they point out the likely

importance of the surface and bottom boundary layers, especially air-sea interaction at the

surface, in accounting for this dissipation.

The issue of diabatic eddy transfer is one we discuss only in passing in the present paper.

Rather, we concentrate on the adiabatic interpretation of eddy fluxes, and leave a comprehensive

treatment of diabatic effects to a later paper. In particular, we show that it is always possible

to decompose the eddy tracer flux into advective and rotational components so that the eddy

tracer flux appears in the mean tracer equation as being entirely adiabatic, even if the diabatic

forcing is non-zero. The result is a generalization of the Transformed Eulerian Mean (TEM) of

Andrews and McIntyre (1976) to a fully adiabatic formulation. The theory naturally leads to an

extension of the Temporal Residual Mean (TRM) of McDougall and McIntosh (1996). In this

generalized TRM (TRM-G), diabatic transfer in the mean is achieved by an eddy diffusivity

that is determined either by changes in the local eddy variance with time or by the local,

irreversible dissipation of eddy variance, or both. In a statistically steady state, both the new

adiabatic TEM (TEM-A) and the generalized TRM (TRM-G) are consistent with statement

(i) above; namely, if there is no instantaneous diabatic forcing, then there is also no diabatic

transfer implied by the mean equations when averaged in z-coordinates. The TEM-A is also

consistent with statement (i) in unsteady situations.

We begin in Section 2 by reviewing the eddy tracer flux decompositions of Andrews and

McIntyre (1976, 1978) (that is, the Transformed Eulerian Mean (TEM) summarized in Andrews

et al. (1987)). We also discuss the extensions to the TEM introduced by McDougall and McIn-

tosh (1996), Held and Schneider (1999) and Medvedev and Greatbatch (2003), and complement

these approaches with the two new ways of interpreting eddy tracer fluxes (the TEM-A and the

TRM-G mentioned above). In Section 3, we illustrate the different methods of decomposing

eddy fluxes using idealized numerical experiments, and the last section summarizes the results.

We have added several appendices to the main text, in which we outline the consequences of

temporal (instead of zonal) averaging for the new ways of interpreting eddy tracer fluxes, and

clarify some aspects of the relationship between the new methods and previous approaches.
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2 The eddy fluxes

In this section we review several ways of interpreting the eddy tracer flux resulting from zonal

averaging at constant height and complement them with the new approaches for the inter-

pretation of eddy tracer flux. Note that all results carry over to temporal averaging in three

dimensions, as outlined in Appendix A. Note also that in the sections concerning the zonal

mean problem we use the following notation (Hasselmann, 1982)

∇α =

(
αy

αz

)
and ∇¬α =

(
−αz

αy

)
(4)

where the subscripts y and z denote differentiation of the scalar α in the meridional and vertical

direction, respectively, and the vector subscript ¬ anti–clockwise rotation by 90o.

The Transformed Eulerian Mean (TEM-I)

The Transformed Eulerian Mean method of Andrews and McIntyre (1976) (TEM-I hereafter)

introduces a decomposition of the eddy tracer flux F into a part aligned along contours of b̄

and a correction term

F =

(
v′b′

w′b′

)
= B∇¬ b̄ + δe(z). (5)

Here, the ad hoc choice B = −v′b′/b̄z yields a streamfunction for an eddy–induced tracer

advection velocity ueddy = −∇¬B. However, the representation of the advective nature of F is

only exact with the remainder δe(z), with δ = v′b′/b̄z b̄y + w′b′. Substituting this expression for

F into the mean tracer budget (Eq. 3) yields

b̄t + (ū + ueddy) · ∇b̄ = Q̄− δz (6)

In general, the remainder δ = v′b′b̄y/b̄z +w′b′ is not zero; only if the eddy flux F is entirely along

contours of b̄ does the remainder δ vanish. Taking b to be density and assuming a strongly

stratified situation (b̄y << b̄z and accordingly w′b′ << v′b′) the remainder δ can become small.

In this limit (or for F · ∇b̄ = 0), the effect of ∇ · F can be represented by the eddy–induced

tracer advection velocity −∇¬B = ueddy, which together with the mean velocity ū advects the

tracer b̄. The sum ueddy + ū is sometimes called the “residual velocity”. However, we shall

show below with numerical simulations that the remainder δz is not small in general, leading

to substantial deviations in the behavior of the residual streamfunction in the TEM-I from the
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ideal case implied by the layered framework. On the other hand, we shall also show below

that it is possible to define a streamfunction with a different, decomposition of F, which is in

agreement with our knowledge from the layered framework.

An alternative TEM (TEM-II)

The alternative TEM flux decomposition of Held and Schneider (1999) (TEM-II hereafter) uses

the vertical eddy fluxes to construct a streamfunction for the eddy–induced velocity:

F = B∇¬ b̄ + δe(y) , b̄t + (ū−∇¬B) · ∇b̄ = Q̄− δy (7)

where B = w′b′/b̄y and δ = w′b′/b̄y b̄z + v′b′. The remainder δ is again zero if the eddy flux

has no component across contours of b̄. In contrast to the TEM-I, the TEM-II decomposition

can become a good approximation for situations in which b̄y >> b̄z, e. g. in the oceanic mixed

layer, since then the remainder δ can become small.

A generalized TEM (TEM-G)

It is possible and more elegant to combine the TEM-I and TEM-II in the following way. We

decompose the eddy tracer flux in directions along and across contours of b̄

F = B∇¬ b̄ + K∇b̄ (8)

where B and K are given by projections of the eddy flux along and across contours of b̄

respectively

B = |∇b̄|−2F · ∇¬ b̄ , K = |∇b̄|−2F · ∇b̄ (9)

Such a decomposition (TEM-G hereafter) can be found in Andrews and McIntyre (1978) and

is used by Nakamura (2001), Greatbatch (2001) and Olbers and Visbeck (2003). Note that

B denotes again a streamfunction for the eddy–induced advection velocity. In addition, an

eddy–induced diffusion term with diffusivity K shows up in the mean tracer budget

b̄t + (ū−∇¬B) · ∇b̄ = Q̄−∇ ·K∇b̄ (10)

The eddy–induced diapycnal diffusivity K vanishes for F · ∇b̄ = 0 (as for the remainder δ

in the TEM-I and TEM-II cases). In the limits b̄y >> b̄z or b̄y << b̄z the streamfunction
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B equals that in the TEM-II or TEM-I cases, respectively. Likewise, in these limits, the

eddy–induced diapycnal diffusivity K becomes equal to δ/b̄y or δ/b̄z, respectively. This feature

makes the TEM-G flux decomposition useful for the more general situation and especially for

the transition regions between the ocean interior and the surface and bottom boundary layers.

We shall use and diagnose TEM-G in the numerical experiments discussed below instead of

the TEM-I or TEM-II flux decompositions, since the form of a diapycnal diffusivity K, rather

than the remainder terms δ, offers a convenient way to quantify the effect of the remainder in

comparison with explicit diapycnal diffusivities specified in the numerical experiments, and our

knowledge of diapycnal diffusivities in the ocean.

The adiabatic Transformed Eulerian Mean (TEM-A)

We proceed now by aiming to minimize the remainder (δ or K) due to the non–advective

character of the eddy tracer fluxes in the mean tracer budget. In fact, we shall show that this

remainder can be set to zero. Consider the flux decomposition

F = ∇¬θ + B∇¬ b̄ + K∇b̄ (11)

where ∇¬θ serves as a rotational gauge flux which drops out when taking the divergence of F.

The eddy streamfunction B and diapycnal diffusivity K are now given by

B = |∇b̄|−2(F−∇¬θ) · ∇¬ b̄ , K = |∇b̄|−2(F−∇¬θ) · ∇b̄ (12)

Since ∇¬θ makes no contribution to the mean tracer budget, we have flexibility in the choice of

θ, a flexibility we now exploit. In particular, we can ask for a θ that minimizes (in some sense)

K∇b̄ (that is the cross–isopycnal eddy flux, when specifying b as potential density), leading to

the following minimization problem

1

2

∫
W (K∇b̄)2dydz = min (13)

where W (y, z) denotes a weighting function which is specified below. The corresponding Euler–

Lagrange equation is

∇¬ b̄ · ∇
[

W

|∇b̄|2
(
F · ∇b̄ +∇θ · ∇¬ b̄

)]
= 0 (14)

which states that the term inside the brackets is constant along contours of b̄. By specifying

W as W = |∇b̄|, it is convenient to use new coordinates along (s) and perpendicular (n) to
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contours of b̄ for the bracketed term so that

F · ∇b̄

|∇b̄|
+∇θ ·

∇¬ b̄

|∇b̄|
= G(b̄) transforms to F⊥(s, n) +

∂θ(s, n)

∂s
= G(n) (15)

where F⊥ = F · ∇b̄
|∇b̄| denotes the component of the eddy tracer flux across contours of b̄. Without

loss of generality4 we can set G = 0 and

θ(s, n) = −
∫ s

s0

F⊥ds′ and θ(s0, n) = 0 (16)

and we get, in turn,

K = |∇b̄|−1(F⊥ +
∂θ

∂s
) = 0; (17)

that is, zero eddy–induced diffusivity K as the minimal value.

Eq. 16 states that the optimal θ is given by the integral along a b̄ contour of the eddy tracer

flux component across that contour of b̄. Subtracting the gauge flux ∇¬θ from the eddy tracer

flux gives zero eddy–induced diffusivity K. This is the main point of the paper. It should be

noted that θ, as defined by Eq. 16, is unique up to the choice of where to start the integration

on the contour of b̄, i. e. s = s0. Choosing a different s0 changes θ and, in turn, B by a function

of b̄ (but has no effect on K), implying that the eddy–induced flow can be changed by a free

component along b̄ contours. Note also that with this definition for θ, the rotational part of the

eddy flux, and in consequence the definition of the eddy streamfunction, becomes non–local.

Using this eddy tracer flux decomposition in the mean tracer budget yields

b̄t + (ū−∇¬B) · ∇b̄ = Q̄ (18)

For b̄t = Q̄ = 0, the residual flow is purely along contours of b̄, and, in general (including cases

with time-dependence), only a non–zero Q̄ can force cross–isopycnal residual flow. We stress

that these features are the essentials of what we know from the layered framework; that is, in

agreement with statement i) from section 1.

The TEM-A approaches the previous versions in the following limit: If the eddy tracer flux

is entirely along contours of b̄, the rotational potential θ and in consequence the rotational eddy

4 The following (mathematical) caveat should be noted: In the case of a closed contour of b̄, we obviously
cannot set the constant G in Eq. 15 to zero. Here, it is not possible to set θ such that K = 0, instead we
have to set G(n) =

∮
F⊥(s, n)ds and get K = |∇b̄|−1

∮
F⊥ds. The minimal diffusivity K in the case of closed

contours of b̄ is given by the averaged and weighted eddy tracer flux across the respective closed contour of b̄.
However, note that this case cannot apply in the case of isopycnal coordinates for which closed isopycnals are
not permitted.
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tracer flux is zero. For this case the eddy streamfunction and diffusivity (which is also zero)

become the same as in the TEM-G, and in the limits b̄z << b̄y or b̄z >> b̄y the same as in the

TEM-II and TEM-I respectively.

The Temporal Residual Mean (TRM) vs. TEM-A

Adding a rotational non–divergent part to the eddy tracer fluxes F does not effect the mean

tracer budget. However, it does effect the eddy variance equation, offering an opportunity to

interpret this part of the flux. This fact was used by McDougall and McIntosh (1996) to develop

the Temporal Residual Mean (TRM-I hereafter) extension to the TEM theory and later the

TRM–II version (McDougall and McIntosh, 2001). We discuss here the more general and –

in this context – simpler derivation, similar to what can be found in Greatbatch (2001) and

Medvedev and Greatbatch (2003), and compare it with the above presented TEM-A.

The eddy tracer fluxes are again expressed as

F = ∇¬θ + B∇¬ b̄ + K∇b̄ (19)

where ∇¬θ serves as a gauge flux which drops out when taking the divergence of F and so does

not contribute to the mean tracer budget. Motivation for a non-zero rotational potential θ

comes from the budget of tracer variance (φ = b′2/2) since here the gauge flux shows up. The

eddy variance equation is given by

φt +∇ · uφ = b′Q′ −∇¬θ · ∇b̄−K|∇b̄|2 (20)

in which the decomposition for F is used. Note that we could set K = 0 by using θ(s, n) =

−
∫ s
s0

F⊥ds as before, but, for now, we hesitate to do so.

We now decompose the total (i. e. mean plus eddy) flux of eddy tracer variance into com-

ponents along and across contours of b̄ plus a rotational part, as we did before for the eddy

tracer flux F,

uφ = ∇¬θ2 + B2∇¬ b̄ + K2∇b̄ (21)

Note that we can set K2 = 0 by the choice θ2 = −
∫ s
s0

[uφ]⊥ds, but again we hesitate to do

so. Instead we want to monitor the eddy variance equation and the mean tracer budget while

adjusting θ and θ2

φt +∇(B2 − θ) · ∇¬ b̄ = b′Q′ −K|∇b̄|2 −∇ ·K2∇b̄ (22)

b̄t + (ū−∇¬B) · ∇b̄ = Q̄−∇ ·K∇b̄ (23)
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The choice θ = B2 and θ2 such that K2 = 0 gives the following set of equations, which resemble

a generalized TRM (TRM-G hereafter) set of equations

φ̄t = b′Q′ −K|∇b̄|2 (24)

b̄t + (ū−∇¬B) · ∇b̄ = Q̄−∇ ·K∇b̄ (25)

with

B = |∇b̄|−2(F−∇¬B2) · ∇¬ b̄ , K = |∇b̄|−2(F−∇¬B2) · ∇b̄ (26)

B2 = |∇b̄|−2(u′φ−∇¬θ2) · ∇¬ b̄ , θ2 = −
∫ s

s0

[uφ]⊥ds (27)

As demonstrated in Appendix B, the difference between TRM-G and the TRM version of

Medvedev and Greatbatch (2003) (TRM-M hereafter) is given by assuming that θ2 = 0 in

TRM-M, and to TRM-I (McDougall and McIntosh, 1996) by assuming further that bz >> by

and u′φ ≈ 0.

The beauty of the TRM-G set of equations is that only one diffusive term with a single

diffusivity (given by K = |∇b̄|−2(φ̄t − Q′b′)) shows up on the right hand side of the eddy

variance and mean tracer budget5. Furthermore, this particular choice of K is positive (implying

downgradient transfer) if there is either growth in eddy variance (φ̄t > 0) or irreversible removal

of eddy variance (−Q′b′ > 0) (for an example of the former situation, but taking b to be

potential vorticity rather than potential density, see Wilson and Williams (2004) ). The TRM-

G decomposition of fluxes was anticipated by Greatbatch (2001), where the normal flux of

eddy variance was overlooked. The flux decomposition given by Marshall and Shutts (1981)

is also a special case of the TRM-G in which it is assumed that θ2 = K2 = 0; that is, that

the entire flux of variance is along b̄-contours. It should be noted that in the adiabatic, steady

limit (Q = φ̄t = 0) K = 0 and the residual flow ū−∇¬B is strictly along contours of b̄, showing

that the TRM-G is consistent with statement i) in Section 1 (that is, consistent with isopycnal

averaging) in the steady, adiabatic limit. What is not clear, however, is how big the eddy-

induced diapycnal diffusivity is when Q 6= 0, and how well the implied mixing compares with

our expectations, based on the presumption that diapycnal transfer and water mass conversion

is weak in the ocean interior (an issue we explore using numerical experimentation in Section

3).

Alternatively we can set θ such that K = 0 and θ2 such that K2 = 0 which leads to the

5 Note that the term K|∇b̄|2 can be interpreted as a conversion term between φ̄ and the mean tracer variance
b̄2/2, since it shows also up (with opposite sign) in the budget of b̄2/2 - see Medvedev and Greatbatch (2003).
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TEM-A set of equations

φ̄t +∇(B2 − θ) · ∇¬ b̄ = b′Q′ (28)

b̄t + (ū−∇¬B) · ∇b̄ = Q̄ (29)

with

B = |∇b̄|−2(F−∇¬θ) · ∇¬ b̄ , θ = −
∫ s

s0

F⊥ds (30)

B2 = |∇b̄|−2(uφ−∇¬θ2) · ∇¬ b̄ , θ2 = −
∫ s

s0

[uφ]⊥ds (31)

Here, the mean tracer and mean tracer variance budgets show no diffusive terms. On the other

hand a term shows up in the φ̄ budget, given by the change of the difference between B2 and θ

on a contour of b̄, balancing the rate of change and dissipation of variance given by Q′b′− φ̄t. In

the steady adiabatic limit, that is Q = φ̄t = 0, the TEM-A set of equations becomes the same

as the TRM-G (Eq. 24 and Eq. 25), since in Eq. 28 we can put θ = B2 (up to a function of b̄).

However, for non zero Q there will be a difference between the choices for θ in the TRM-G and

the TEM-A, forcing a non-zero K in the TRM-G as demonstrated in Appendix C.

The different eddy tracer flux decompositions

We have presented and named several different versions of the TEM and TRM. These are

summarized in Table 1. We have identified the TEM-I version of Andrews and McIntyre (1976)

and TEM-II version of Held and Schneider (1999) as special cases of a generalized TEM version,

called TEM-G. However, in all these TEM versions, a term related to an apparent eddy–induced

diapycnal diffusion shows up in contrast to our aim (statement i) in Section 1) to represent the

effect of eddy fluxes as a purely isopycnal flux if Q = 0. As shown in Section 3, the implied

eddy-induced diapycnal diffusion can become large. Our main result is that it is possible to set

this diffusive term to zero by introducing a non–locally defined gauge flux in the eddy tracer

fluxes. We call this flux decomposition the adiabatic Transformed Eulerian Mean or TEM-A.

All TEM versions consider the first order moments. In contrast, the TRM versions consider

the eddy tracer variance equation to find gauge fluxes for the eddy tracer flux. We have

defined a generalized TRM version, called TRM-G, which contains only a single diffusivity K

which is given by the (local) rate of change and dissipation of eddy variance (as anticipated by

Greatbatch (2001), and for which the decomposition proposed by Marshall and Shutts (1981)

is a special case) by introducing a non–local gauge flux in the tracer variance fluxes.
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However, in contrast to the TEM-A flux decomposition the diapycnal diffusivity in TRM-G

shows up in the mean tracer equation for non zero Q and is related to Q′b′. The gauge flux of

the eddy tracer flux in the formulation is given by the along–isopycnal flux of variance corrected

by the gauge flux of the variance fluxes. Setting the gauge flux of the variance fluxes to zero

leads to TRM-M, for which the special case bz >> by and v′φ ≈ 0 leads to TRM-I. We have

shown that the TRM-G version approaches TEM-A in the steady and adiabatic limit. This

is not true for TRM-M or TRM-I, since here the eddy–induced diapycnal diffusivity does not

necessarily vanish in the steady, adiabatic limit. McDougall and McIntosh (1996) show that

the diffusivity should be zero to cubic order in perturbation amplitude, an approximation that

does not hold up in the numerical experiments which are discussed next.

3 Numerical simulations of eddy fluxes

We proceed now by diagnosing numerical experiments using an OGCM in several idealized

configurations with respect to the above presented eddy flux decompositions. The numerical

code6 which is used to integrate the OGCM is based on a revised version of MOM2 (Pacanowski,

1995). We shall explain the specific configurations of the numerical experiments where they

appear first in this section.

Experiment CHANNEL0 is a setup with a reentrant channel on a β–plane (referenced to

the southernmost latitude of the model domain). Horizontal resolution is 1/3o and there are

20 levels of 100m thickness. Initial conditions are a state of rest and constant meridional and

vertical gradients in temperature (−1 × 10−5K/m and 8.2 × 10−3K/m respectively) and no

zonal gradient (except for a small perturbation). A linear equation of state is used (∂ρ/∂T =

−0.2 × 10−3kg/m3/K) and salinity set to a constant. Boundary conditions are no slip at the

side walls and vanishing heat fluxes at the side walls, surface and bottom boundaries. Bottom

friction following a quadratic drag law is used with a coefficient of 1.5× 103, lateral biharmonic

friction with viscosity of 2 × 1011m4/s and the Quicker advection scheme (Leonard, 1979) for

the tracer with no explicit diffusion. Explicit vertical viscosity is 2× 10−4m2/s. Temperature

at the three northernmost and southernmost grid points is relaxed towards the initial condition

with a timescale ranging from 3 days at the boundary to 15 days at the outer edge of the

relaxation zone.

6The numerical code together with all configurations used in this study can be accessed at
http://www.ifm.uni-kiel.de/fb/fb1/tm/data/pers/ceden/spflame/index.html.
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After a couple of weeks integration time, baroclinic instability sets in and is producing

large zonal deviations of the flow in the channel. Figure 1 shows the fully developed stage of

turbulence after one year integration. The model is integrated for 40 years and temporal and

zonal averages are taken for the last 30 years of the integration.

In the following we relate b to temperature, i. e. density, since temperature acts as the

only (active) tracer in the model. θ is calculated by interpolating F(y, b̄(y, z)) · ∇b̄/|∇b̄| to an

equidistant grid in the new coordinate b̄ and integrating this quantity along lines of constant

b̄, starting inside the southern relaxation zone, where we put θ = 0. In this way, we obtain

θ(y, b̄) = −
∫ s
s0

F⊥ds and then interpolate θ back to z as vertical coordinate. This θ serves than

as the boundary condition to solve the Euler–Lagrange Eq. 14. (Note that the last step is

formally not needed.)

We first compare the eddy streamfunctions and diffusivities in the flux decomposition TEM-

G with the decomposition TEM-A. Figure 2 shows eddy streamfunction and eddy–induced

diapycnal diffusivity in both cases for experiment CHANNEL-0. Note that in this setup the

TEM-I version of Andrews and McIntyre (1976) is virtually the same as TEM-G since by << bz

(the TEM-II differs a lot from TEM-G however). The diapycnal diffusivity K in TEM-A

fluctuates around zero diapycnal diffusivity, as expected by construction, while K in TEM-

G is much larger, about 150 cm2/s at maximum, resembling a large eddy–induced diapycnal

diffusivity.

The values of the eddy streamfunction range from 0 to −30 m2/s in both flux decomposi-

tions. Note that the streamfunctions are given for the zonally averaged flow and that a value

of 30 m2/s corresponds to about 30 Sv per 10o longitude volume transport in this model setup.

Thus, there is a rather strong eddy–driven meridional overturning in this setup. Since the

streamfunction of the mean flow in CHANNEL0 (not shown explicitly) is much smaller com-

pared to the eddy streamfunction, the meridional flow is dominantly eddy–driven in this setup.

Note also that in addition to the meridional overturning, there is also a strong zonal transport

of about 400 Sv (not shown however).

Figure 3 shows the (residual) streamfunction for the total (meridional) flow (ū − ∇¬B) in

TRM-G and TEM-A. The residual streamfunction for TEM-G shows strong cross–isopycnal

flow while the residual flow of TEM-A is more or less aligned along isopycnals with very little

flow across isopycnals, which is entirely driven by Q̄. On the other hand, we can conclude that

the term ∇·K∇b̄ drives the strong cross–isopycnal residual flow in TEM-G and that ∇·K∇b̄ is

therefore much larger than Q̄. Removing this term by accounting for the cross-isopycnal eddy
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tracer transport F⊥ by adding ∇¬θ to F in TEM-A leads to a total flow more or less aligned

along isopycnals, removing the large apparently eddy–induced diapycnal diffusivity in TEM-G.

We proceed now by comparing TEM-A and TEM-G with the different TRM versions using

output from experiment CHANNEL-0. Figure 4 shows the residual streamfunction and the

eddy–induced diapycnal diffusivity K for TRM-M (Medvedev and Greatbatch, 2003). Also

shown are the residual streamfunctions for TRM-I (McDougall and McIntosh, 1996) and TRM-

II (McDougall and McIntosh, 2001), which can be seen as special cases (for by << bz) of

TRM-M as outlined in Appendix B. However, note that B (and correspondingly K) in both

TRM versions of McDougall and McIntosh are virtually the same as for the TEM-I of Andrews

and McIntyre (1976) (this is because there is almost no mean advection of eddy variance in

this setup). It is also of interest that there is significant diapycnal flow in both TRM-I and

TRM-II versions. Since TRM-II is constructed so as to mimic isopycnal averaging, the implied

diapycnal diffusivity in this case indicates the error that arises because formulae in the TRM-II

case are given only to quadratic order in perturbation amplitude, higher order terms being

neglected.

The eddy–induced diapycnal diffusivity K in TRM-M is slightly smaller than K in TEM-G,

however, there is still strong cross–isopycnal transport in the streamfunction of the residual flow.

The reason is given by the difference of θ in TRM-M and θ in TEM-A. Although both rotational

potentials θ are similar in the interior (not shown), there are strong differences approaching the

surface and bottom. As demonstrated in the Appendix C, the change of the difference between

both definitions of θ along contours of b̄ results in a non–zero K in the TRM version.

The rotational potential θ for TRM-G (θ2 = −
∫ s
s0

uφ⊥ds, not shown) is actually rather

similar to θ in TRM-M. Consequently, the eddy-induced diapycnal diffusivity K in TRM-G is

only slightly reduced compared to K in TRM-M. The difference in K between TRM-G and

TRM-M is given by the effect of the cross–isopycnal eddy variance fluxes. It appears that this

term is small compared to the term related to dissipation of eddy variance in the present setup.

In the steady state, the eddy–induced diffusivity for TRM-G is given by K = (∇b̄)−2Q′b′. It

follows that in TRM-G the covariance between forcing and density perturbations drives a large

diapycnal diffusivity, orders of magnitude larger than the effect of the mean diabatic forcing Q̄.

One might argue that the experiment CHANNEL-0 is rather diabatic compared to reality,

since the diapycnal mixing is too strong because of low resolution. In fact, since the specified

Q outside the relaxation zones is zero, it follows that the diabatic forcing in the model runs,

outside the relaxation zones, is due to spurious numerical effects (Griffies et al., 2000; Eden
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and Oschlies, 2004).

The most effective way to reduce these effects and correspondingly Q in the model is simply

given by increasing the resolution. Figure 5 shows B, K and total streamfunction in the different

TEM/TRM versions in experiment CHANNEL0-12, in which we have increased the horizontal

and vertical model resolution by a factor 4. In addition, we have decreased the biharmonic

viscosity to 2×1010m4/s and relax the temperature towards the initial condition in 12 (instead

of 3) southern– and northernmost grid points. All other aspects of the model are unchanged

with respect to experiment CHANNEL0.

The diapycnal diffusivity K in the TEM-G and TRM-M is reduced with respect to exper-

iment CHANNEL-0 and the total flow is now more aligned along mean isopycnals as before.

Again, TRM-M shows lower diffusivities than TEM-G. However, K is of the order of 20 cm2/s

in TRM-M and there are regions of even stronger diapycnal diffusivities, e. g. near the bottom

of the channel. These features are further reduced but not eliminated by going to TRM-G

(not shown). We might conclude therefore, that the impact of the eddy variance fluxes on the

definition of K is stronger in experiment CHANNEL0-12 compared to CHANNEL0 as a result

of the reduced dissipation Q′b′. However, the eddy–induced diapycnal mixing in TRM-G is still

orders of magnitude larger than the mean forcing Q̄, since we see almost no cross–isopycnal

transport in TEM-A in contrast to TRM-G.

4 Discussion

We can ask which of the many eddy tracer flux decompositions summarized in Table 1 is the

“best”? In the first section, we formulated statement i) by considering averaging on constant

b surfaces (isopycnal averaging when b is potential density, as here). In particular, we argued

that a desirable feature of an eddy flux decomposition should be that if the instantaneous

diabatic forcing is zero, then there should be no diapycnal flux implied by the mean equations.

A possible way to judge the different eddy tracer flux decompositions is to ask how consistent

they are with this statement.

TEM-G is certainly the simplest decomposition we have considered, since it is the easiest to

understand and to diagnose from data (either model results or observations) and is for strongly

stratified situations virtually the same as the TEM of Andrews and McIntyre (1976) (TEM-

I). However, the eddy–induced diapycnal diffusivity in this decomposition does not vanish in

general for the adiabatic case, which is in clear contradiction to statement i). Only for van-
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ishing cross–isopycnal eddy tracer flux does the diapycnal diffusivity vanish. In the numerical

experiments, the diagnosed diapycnal diffusivities for TEM-G are the largest in all the flux

decompositions considered.

TRM-I (McDougall and McIntosh, 1996) is similar TRM-M (Medvedev and Greatbatch,

2003), but applied to the case of a strongly stratified ocean (the remaining difference between

TRM-I and TRM-M arises because McDougall and McIntosh neglect the triple correlation

in the eddy variance fluxes). As for TEM-G, it is not guaranteed that the implied eddy-

induced diapycnal diffusivity is zero in the adiabatic limit. (This is because the formulae given

by McDougall and McIntosh (1996) neglect terms of cubic order and higher in perturbation

amplitude, terms that are not small in our numerical experiments.) Only for the steady case,

and if the cross–isopycnal flux of variance vanishes, the eddy–induced diapycnal diffusivity

becomes zero when there is no diabatic forcing.

TRM-G and TEM-A both guarantee zero eddy–induced diapycnal diffusivity for the adia-

batic and steady case. We might argue therefore that only these two eddy flux interpretations

satisfy our statement i) and we may proceed to consider now the more realistic case of weak

diabatic forcing. For the steady case of non–zero diabatic forcing, TRM-G gives eddy–induced

diapycnal diffusivity related to the covariance between forcing and density. However, the effect

of ∇ · (K∇b̄) from TRM-G is orders of magnitude larger than Q̄ in the numerical experiments.

We have to assume either very strong eddy–induced diapycnal mixing in the numerical exper-

iments or that the eddy flux interpretation in TRM-G is not in agreement with our implicit

belief that eddy–induced diapycnal mixing is a weak effect outside boundary layers. In con-

trast, the TEM-A flux decomposition as defined in this paper has zero eddy–induced diapycnal

mixing by construction, regardless of whether there is diabatic forcing or not, and even if the

correlation Q′b′ is non-zero. It is nevertheless possible to change the minimization problem

that leads to TEM-A by allowing for non-zero eddy-induced diapycnal diffusivity, an issue we

discuss further in a later paper.

To answer the above question: none of the eddy flux interpretation is “best”. However,

TEM-A and TRM-G are clearly “better” than the others, with respect to the formal requirement

on eddy-induced/enhanced diapycnal mixing expressed by statement i) in Section 1, but we are

unable to judge, which one is better. Therefore we may apply another measure to judge the

different interpretations: We may criticize that TEM-I, TEM-G, TRM-I/II and TRM-M give ad

hoc solutions for the interpretation of eddy fluxes. Andrews and McIntyre (1976) simply define

an eddy streamfunction without any other justification than that it turns out to be a rather

good choice for the stratified situation. The same holds for TEM-G. Medvedev and Greatbatch
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(2003) (and accordingly McDougall and McIntosh (1996)) aim to simplify the variance equation

by specifying the rotational eddy fluxes in a certain ad hoc way, with the justification that this

choice might turn out to be in agreement to what they have been in mind. A similar statement

holds for TRM-G.

TEM-A, on the other hand, results from a minimal problem, in which we can implement

in a objective manner what we believe to be known about the eddy tracer fluxes from the

layered framework. Therefore, this decomposition gives a well–defined eddy flux decomposition

and interpretation. However, TEM-A is hampered by our current inability to exactly quantify

where and by how much eddies enhance diapycnal mixing. This issue will be explored in a later

paper.
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Appendix A

In this section, we outline the consequences of temporal instead of zonal averaging on TEM-A.

Note that all vectors are three–dimensional in this section. Starting with the instantaneous

tracer budget Eq. 1, we decompose b, the velocity u and the diabatic forcing Q into temporal

averages at constant height and deviations

b = b̄ + b′ , b̄ = (t2 − t1)
−1
∫ t2

t1
b dt , b′ = b− b̄ (32)

and analogous for u and Q. Averaging Eq. 1 yields

b̄t +∇ · (ūb̄ + u′b′) = Q̄ (33)

TEM-A for three dimensions can be written as

F =

 u′b′

v′b′

w′b′

 = ∇× θ + B×∇b̄ + K∇b̄ (34)
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where θ is a three–dimensional vector potential and

B = −|∇b̄|−2(F−∇× θ)×∇b̄ , K = |∇b̄|−2(F−∇× θ) · ∇b̄ (35)

Note that we have specified B · ∇b̄ = 0 analogous to TEM-G in three dimensions. Now we ask

again for a vector θ = (θ(1), θ(2), θ(3)) which minimizes

1

2

∫
|∇b̄|(K∇b̄)2dxdydz =

1

2

∫
L(θ(1)

z , θ(1)
y , θ(2)

z , θ(2)
x , θ(3)

x , θ(3)
y )dxdydz = min (36)

The Euler–Lagrange equation is given by

(L
θ
(1)
y

)y + (L
θ
(1)
z

)z + (L
θ
(2)
x

)x + (L
θ
(2)
z

)z + (L
θ
(3)
x

)x + (L
θ
(3)
y

)y = 0 (37)

with

L
θ
(i)
x

=
∂(∇× θ · ∇b̄)

∂θ
(i)
x

(F · ∇b̄|∇b̄|−1 −∇× θ · ∇b̄|∇b̄|−1) (38)

Now specify for instance θ = (δ, 0, 0) and get

(Lδy)y + (Lδz)z = (−b̄z(F⊥ −∇× θ · ∇b̄|∇b̄|−1))y + (b̄y(F⊥ −∇× θ · ∇b̄|∇b̄|−1))z = 0 (39)

Thus the term inside the innermost brackets is constant on contours of b̄ in the meridional

(y–z) plane on which we can integrate the cross–isopycnal flux F⊥ to obtain δ, analogous as

before for the zonal mean case. Using the expression for u′b′ in the mean tracer budget yields

b̄t + (ū +∇×B) · ∇b̄ = Q̄ (40)

Note that the same method can be used for TRM-G in three dimensions.

Appendix B

In this appendix we show the relation of TRM-G as presented in this paper with the flux

decompositions TRM-I (McDougall and McIntosh, 1996), TRM-II (McDougall and McIntosh,

2001) and TRM-M (Medvedev and Greatbatch, 2003). As discussed in section 2, the choice

θ = B2 and θ2 such that K2 = 0 leads to the TRM-G set of equations

φ̄t = b′Q′ −K|∇b̄|2 (41)

b̄t + (ū−∇¬B) · ∇b̄ = Q̄−∇ ·K∇b̄ (42)
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Setting instead θ = B2 and θ2 = 0, i. e. omitting all non–local gauge fluxes, a term related to

the cross-isopycnal flux of eddy variance shows up in the eddy variance equation:

φ̄t = b′Q′ −K|∇b̄|2 −∇ ·K2∇b̄ (43)

b̄t + (ū−∇¬B) · ∇b̄ = Q̄−∇ ·K∇b̄ (44)

with

B = |∇b̄|−2(F−∇¬B2) · ∇¬ b̄ , K = |∇b̄|−2(F−∇¬B2) · ∇b̄ (45)

B2 = |∇b̄|−2uφ · ∇¬ b̄ , K2 = |∇b̄|−2uφ · ∇b̄ (46)

The latter choice leads to TRM-M and further leads to TRM-I, for which it is additionally

assumed that b̄z >> b̄y. We find for the eddy streamfunction B for θ2 = 0, θ = B2 and

b̄z >> b̄y

θ = B2 ≈ −vφ/b̄z and B ≈ −(v′b′ + θz)/b̄z (47)

which is the TRM-I streamfunction as given by McDougall and McIntosh (1996) (their Eq. 11)

except that they neglected additionally the triple correlation in the eddy variance fluxes; that

is, they assumed vφ ≈ v̄φ̄. The diffusivity K in TRM-M is given by

K = |∇b̄|−2(Q′b′ − φ̄t −∇ ·K2∇b̄) (48)

and its effect in the mean tracer equation for b̄z >> b̄y is given by

∇ ·K∇b̄ ≈
(

b′Q′

b̄z

)
z

−
(

φ̄t

b̄z

)
z

−
(

1

b̄z

(
uφ · ∇b̄

b̄z

)
z

)
z

(49)

which is the same as Q̄# − Tz − Q̄ in Eq. 12 of McDougall and McIntosh (1996). However,

here, we haven’t neglected the triple correlation in the flux of variance. The o(α3) terms in the

equations in McDougall and McIntosh (1996) are accounting for the assumption b̄z >> b̄y which

are obviously not needed in TRM-M, which resembles therefore a generalization of TRM-I to

the general situation without assuming b̄z >> b̄y. Note that in TRM-G the last term related

to the cross isopycnal variance flux in the above equation does not show up, since K2 = 0

by construction. Note also that in the steady adiabatic limit, this term does not zero out in

general, giving rise for a non–zero K even in this limit.

TRM-II attempts to mimic isopycnal averaging by a truncated (vertical) Taylor expansions

of b and u and leads to a very similar definition of the eddy streamfunction as in McDougall

and McIntosh (1996)

B ≈ −(v′b′ − v̄z(φ̄/b̄z))/b̄z (50)
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and is (consequently) in our numerical experiments very similar to the TRM-I version of Mc-

Dougall and McIntosh (1996). Note, however that the mean variables b̄ and ū have been

redefined in TRM-II, in such a way as to absorb the cross isopycnal flux of variance (again only

the mean flux) into the definition of the new variable, making it difficult to relate the TRM-II

with a diffusivity K.

Appendix C

The difference between the rotational potential θ in TEM-A and the θ in TRM-M can be seen

by comparing effect in the eddy variance equation by the choices θ∗ = B2 and θ2 = 0 and

θ = −
∫ s
s0

F⊥ds and θ2 = 0 for the steady limit

0 = Q′b′ −K|∇b̄|2 −∇ ·K2∇b̄ (51)

∇(θ∗ − θ) · ∇¬ b̄ = Q′b′ −∇ ·K2∇b̄ (52)

Thus by adding both equations we obtain

∇(θ∗ − θ) · ∇¬ b̄ = K|∇b̄|2 (53)

(54)

It is the change of the difference between both definitions along contours of b̄ which is accounted

for by the eddy–induced diffusivity K. The same holds obviously for the differences in θ in

TEM-A and TRM-G.
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Acronym Meaning Assumption diapycnal diffusivity

TEM-I Transformed Eulerian Mean b̄z >> b̄y δ/b̄z

(Andrews and McIntyre, 1976)

TEM-II Transformed Eulerian Mean b̄y >> b̄z δ/b̄y

(Held and Schneider, 1999)

TEM-G generalized TEM - K = |∇b̄|−2u′b′ · ∇b̄
(Andrews and McIntyre, 1978)

TEM-A Transformed Eulerian but Adiabatic Mean - 0

TRM-I Temporal Residual Mean b̄z >> b̄y, δ/b̄z

(McDougall and McIntosh, 1996) v′φ ≈ 0

TRM-II Temporal Residual Mean b̄z >> b̄y, see appendix B
(McDougall and McIntosh, 2001) v′φ ≈ 0

TRM-M Temporal Residual Mean by θ2 = 0 see appendix B
Medvedev and Greatbatch (2003)

TRM-G generalized TRM - K = |∇b̄|−2(Q′b′ − φ̄t)

Table 1: Summary of names and features of the eddy flux decompositions discussed in the text.
Note that the definition for K and δ differ for each version.
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Figure 1: Instantaneous temperature and velocity at 1000m depth after one year integration in
experiment CHANNEL0. Every second velocity grid point is displayed and the color shading
ranges from 2oC to 12oC
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Figure 2: Eddy streamfunction B in m2/s in TEM-G (upper left panel) and eddy streamfunc-
tion B in TEM-A (upper right panel) and diffusivity K in cm2/s in TEM-G (lower left panel)
and K in TEM-A (lower right panel) in experiment CHANNEL0. The vertical bold lines denote
the start of the restoring zones in all panels.
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Figure 3: Streamfunction for the total flow in TEM-G (left panel) in m2/s and in TEM-A
(right panel) in experiment CHANNEL0. Also shown are contours of b̄ (red lines). The vertical
bold lines denote the start of the restoring zones as in all panels.

26



−30

−25

−20

−15

−10

−5

0

30°N 32°N 34°N 36°N 38°N

−1500

−1000

−500

D
ep

th
 [m

]

−100

−50

0

50

100

150

30°N 32°N 34°N 36°N 38°N

−1500

−1000

−500

D
ep

th
 [m

]

−30

−25

−20

−15

−10

−5

0

30°N 32°N 34°N 36°N 38°N

−1500

−1000

−500

D
ep

th
 [m

]

−30

−25

−20

−15

−10

−5

0

30°N 32°N 34°N 36°N 38°N

−1500

−1000

−500

D
ep

th
 [m

]

Figure 4: Residual streamfunction B (upper left panel) in m2/s and diffusivity K in cm2/s
(upper right panel) in TRM-M in CHANNEL0. Also shown are the residual streamfunctions
for TRM-I (lower left panel) and TRM-II (lower right panel).

27



−30

−20

−10

0

30°N32°N34°N36°N38°N

−1500

−1000

−500

D
ep

th
 [m

]

−30

−20

−10

0

30°N32°N34°N36°N38°N

−1500

−1000

−500

−30

−20

−10

0

30°N32°N34°N36°N38°N

−1500

−1000

−500

−50

0

50

30°N32°N34°N36°N38°N

−1500

−1000

−500

D
ep

th
 [m

]

−50

0

50

30°N32°N34°N36°N38°N

−1500

−1000

−500

−50

0

50

30°N32°N34°N36°N38°N

−1500

−1000

−500

Figure 5: Upper row: residual streamfunctions B in experiment CHANNEL0-12 in m2/s.
Lower row: diffusivities K in cm2/s. Left column: TEM-G, middle column: TRM-M, right
column: TEM-A.
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