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Abstract. A formalism to describe the advective and diffusive eddy trans-

port in terms of the mean tracer is presented. It is based on Eulerian aver-

aging, the flux-gradient relation, and the decomposition of the eddy flux of

a tracer into advective, diffusive and rotational components. The rotational

(non-divergent) flux arises because the conservation equation for the mean

tracer contains only a divergence of the eddy flux of the tracer. To provide

a closure, a modification to the flux separation technique based on the eddy

variance equation is introduced. The “eddy-induced” advective velocity is

represented as the sum of two velocities v1 and v2. v1 is similar to that in

the Transformed Eulerian Mean (TEM) formulation but generalized to ac-

count for both horizontal and vertical eddy fluxes and mean gradients. The

velocity v2 depends on the flux of eddy variance of the tracer. The diffusion

coefficient is represented as a sum of K1, which may serve as a diagnostic

of an irreversible mixing, and K2, which describes up- or downgradient eddy

fluxes of the tracer due to local transformations of the eddy variance. Both

v2 and K2 arise from taking account of the rotational fluxes. The scheme is

applied to output from a global circulation model of the Middle Atmosphere.

It is shown that in the meridional plane, the correction v2 to the TEM ve-

locity is small in the mesosphere and lower thermosphere. For the diffusion

coefficient, however, the correction K2 must be accounted for above approx-

imately 110 km.
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1. Introduction

Transport in fluids, both advective and non-advective, results from motions on various

scales. The common approach in atmospheric and oceanic applications is to subdivide the

flow fields and tracer distributions into an average of some sort and deviations (eddies).

The effect of the eddies enters the conservation equation for the averaged (mean) tracer

through the divergence of the eddy flux of the corresponding tracer. Ultimately, develop-

ment of a diagnostic for the total transport boils down to finding a relationship between

the eddy flux and the mean tracer field.

Material or tracer parcels in the flow experience both translation and deformation. An

irreversible deformation and dispersion of parcels at small scales is usually associated

with the turbulence and diffusion, while the translation at large scales is considered to

occur due to an advection. However, there is no clear distinction between these two

processes because an irreversible deformation and mixing of parcels is known to occur even

in association with large scale flow (e.g., wave breaking, chaotic advection). Transport

phenomena can be studied using Lagrangian-type diagnostics which are designed to follow

parcels or contours in the flow. But the Eulerian technique still remains more practical

for many applications, because most observations and numerical simulations deal with

Eulerian distributions, and the conversion of Lagrangian quantities into the Eulerian ones

is not a trivial task [McIntyre, 1980]. In this paper we study eddy effects on the transport

of the mean tracer in the Eulerian frame of reference.
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Since the Eulerian eddy transport encompasses both advection and diffusion of the

mean tracer, a flux-gradient relationship,

v′q′ = −K∇q̄. (1)

is commonly assumed, where v′q′ is the eddy flux, v′ and q′ are the eddy components of

the velocity v and the tracer q, and K is a tensor. K can be uniquely decomposed into

symmetric and antisymmetric parts and Plumb [1979] has shown that the former being

associated with a diffusion, and the latter with an advection (skew diffusion). It should be

noted that (1) does not define components of the tensor K unambiguously in 3-dimensional

space (9 components of the tensor versus 3 equations), or in a 2-dimensional plane (4

components versus 2 equations). Only in one dimension, can the diffusion coefficient

be defined uniquely [Taylor, 1915; Reed and German, 1965]. Naturally, it would then

represent a diffusion rather than advection.

A widely used approach to study large-scale dynamics of the Middle Atmosphere is

to consider motions on a 2-dimensional meridional plane by decomposing field variables

into zonal mean and zonally asymmetric disturbances (e.g., [Andrews et al. 1987]). In

earlier studies, the analogy with a small-scale turbulent diffusion was exploited to seek a

representation of the eddy flux in the form of the pure diffusive flux of the mean tracer,

e.g. [Reed and German, 1965]. It soon was recognized that this approximation was poor

for large scale eddies, and that the latter contribute also to the net advection of the

mean tracer. Andrews and McIntyre [1976] suggested a way to approximate the eddy

flux of the potential temperature (v′θ′, w′θ′) by an advective flux of the mean potential

temperature θ̄. They expressed the non-divergent eddy-induced velocity (v†, w†) in terms

of the streamfunction ψ = v′θ′/θ̄z. Then the net residual or the Transformed Eulerian
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Mean (TEM) circulation is represented by the sum of the Eulerian mean velocity (v̄, w̄)

and the eddy induced velocity (v†, w†). Note that in deriving the TEM, only the meridional

component of the eddy flux was taken into account, and that the diffusive effect of eddy

flux was neglected.

Following on from the development of the TEM technique, it was noticed that, besides

the advective component, a rotational flux of the form ∇ × Deddy, where Deddy is a

vector streamfunction, should be included in the eddy flux approximation [Marshall and

Shutts, 1981; McDougall and McIntosh, 1996]. The latter can be readily understood since

the eddy flux appears in the mean tracer conservation equation only in the form of its

divergence, and ∇ · (∇ × Deddy) = 0. The TEM formalism has since been generalized

to account for 3-dimensional mean gradients and eddy fluxes, arbitrary tracer, and any

kind the Eulerian averaging, and disturbances of finite amplitude (e.g., [Nakamura, 2001;

Greatbatch, 2001]).

Projecting v′q′ onto the principal axes of the symmetric (diffusive) part of K in (1),

3 diagonal components representing diffusion coefficients can be found. However, to find

the principle axes themselves (or the three remaining elements of the symmetric part of

K), 3 extra equations must be added to close the system. For small amplitude eddies,

Plumb [1979] suggested to explicitly constrain the components of K in terms of parcel

displacement correlations. When parcel excursions are too long compared to spatial scales

of the eddies, their trajectories become intermingled and even stochastic. Therefore, no

useful and relevant constraints exist for finite amplitude disturbances. The problem can

be simplified by approximating the symmetric part of K by a locally isotropic diffusion

with a single diagonal coefficient. It is a reasonable approximation, because diffusion
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along surfaces of constant q cannot be distinguished from advective fluxes in the Eulerian

frame of reference. Nakamura [2001] suggested a diagnostic framework neglecting the

rotational flux. His approach is based on a unique decomposition of eddy flux v′q′ into

vectors normal and parallel to the local surfaces (contours) of constant q̄, the former

being attributed to the diffusive component, and the latter associated with the advective

(antisymmetric) part of K. In [Greatbatch, 2001], rotational flux is taken into account,

and the coefficient of isotropic diffusion is also constrained uniquely (and, incidentally,

coincides, for statistically stationary eddies, with that part of the diffusivity Nakamura

[2001] associates with local, irreversible mixing).

For the stratosphere, it had been shown that the Transformed-Eulerian Mean (or resid-

ual) circulation is a good approximation to the advective transport, and to the diabatic

circulation (e.g., [Geller et al., 1992]). This success prompted the use of TEM diagnos-

tics in the mesosphere and lower thermosphere (MLT). However, the MLT is somewhat

different dynamically from the stratosphere. First, the MLT is subject to a strong cross-

isentropic mixing rather than quasi-horizontal stirring, as in the stratosphere. Second,

other types of waves comprise eddies in the MLT: tides, gravity waves, nonlinear com-

binations of harmonics of fast travelling planetary waves. This motivates revisiting the

applicability of the TEM formalism to describing eddy effects on the large-scale transport

in the MLT. This can be done by explicitly comparing the TEM with the more general

approach which we are going to present in this paper. Note that many constituents in the

MLT region have very short photochemical lifetimes. When the photochemical timescale

is significantly less than the dynamical timescale, then the species is in local photochem-
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ical equilibrium, and transport does not enter into the conservation equation, a situation

we are not concerned with in this paper.

In section 2 we give a mathematical development of the decomposition of the eddy

flux of tracer, v′q′, into advective, diffusive and rotational components. The analysis

closely follows [Greatbatch, 2001], but, in the process, we introduce a correction to the

flux separation closure. In section 3, we apply these results to the fields simulated with a

Middle Atmosphere global circulation model COMMA-LIM. These fields serve as a proxy

to real motions in the MLT. Discussion and summary are given in Sections 4 and 5,

correspondingly.

2. Theory

We begin with the conservation equations for a scalar q and for mass. In the log-pressure

coordinates these equations have the form

∂t(ρ0q) +∇ · (ρ0vq) = Q, (2)

∇ · (ρ0v) = 0, (3)

where v = (u, v, w) is the velocity; ρ0(z) = ρs exp(−z/H) is the background density;

H = RTs/g is the scale height, Ts(ρs) being the constant reference temperature (density),

R is the gas constant; g is the acceleration of gravity; Q is the source term; operator ∇ ≡

(∂x, ∂y, ∂z); ∂i for i = t, x, y, z denote partial derivatives with respect to the corresponding

variable. We introduce an arbitrary (temporal, or spatial, or both) Eulerian average and

expand variables into the mean and eddy quantities, e.g., v = v̄ + v′. Taking the average

of (2), we obtain

∂t(ρ0q̄) +∇ · (ρ0v̄q̄) = −∇ · (ρ0v′q′) + Q̄, (4)
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The corresponding equation for deviations can be derived by subtracting (4) from (2):

∂t(ρ0q
′) +∇ · ρ0

(
v′q̄ + v̄q′ + v′q′ − v′q′

)
= Q′. (5)

It is instructive to consider the equations for the mean and eddy variances, Φ = q̄2/2 and

φ̄ = q′2/2, respectively. Multiplying (4) by q̄, (5) by q′, averaging, and denoting D′ = q′Q′

yields

∂t(ρ0Φ) +∇ · ρ0

(
v̄Φ + v′q′q̄

)
= ρ0v′q′ · ∇q̄ + q̄Q̄, (6)

∂t(ρ0φ̄) +∇ · (ρ0vφ) = −ρ0v′q′ · ∇q̄ +D′. (7)

In deriving the above equations we used the mean and eddy mass conservation equations

∇·ρ0v̄ = 0 and∇·ρ0v
′ = 0, which are the result of (3). In (6) and (7), the terms inside the

divergence operator represent the fluxes of mean and eddy variance, respectively; D′ < 0

corresponds to a dissipation, and D′ > 0 to an injection of the eddy variance φ̄. The term

given by the projection of the eddy tracer flux onto the mean gradient, v′q′ · ∇q̄, can now

be recognized as a conversion rate between the mean and eddy variances. In fact, it is

the component of the flux, v′q′, that is normal to q̄ = constant surfaces that provides a

sink (or a source) for the mean tracer variance. Since diffusion is always associated with

a removal of variance, this conversion term provides a motivation to seek a representation

of the eddy flux divergence in (4), ∇·ρ0v′q′, in the form of a “macro-scale” diffusion. The

sign of the conversion rate determines the direction of the exchange between the reservoirs

of Φ and φ̄, or the sign of a diffusion coefficient, if the latter is found.

Now we want to approximate the eddy tracer flux by subdividing it into advective,

diffusive, and rotational parts following Greatbatch [2001]

ρ0v′q′ = q̄∇×B− ρ0K∇q̄ +∇×D, (8)
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where K is the symmetric diffusion tensor, B is the vector streamfunction for the eddy

induced velocity ρoveddy = ∇×B, and the rotational flux ∇×D serves as a gauge because

the eddy flux only appears under the sign of (∇·) in (4). The first term in the RHS of

(8) describes the advective (skew) flux because its divergence can be represented as an

advection: ∇ · (q̄∇×B) = (∇×B) · ∇q̄. Introducing T = q̄B + D one can rewrite (8) in

the form

ρ0v′q′ = B×∇q̄ − ρ0K∇q̄ +∇×T. (9)

Since B appears in (9) in the form B×∇q̄, the component B parallel to ∇q̄ plays no role.

Therefore, without loss of generality we can assume B · ∇q̄ = 0. The solution for B with

this property can be found by taking ∇q̄× (9):

B = |∇q̄|−2∇q̄ ×
(
ρ0v′q′ + ρ0K∇q̄ −∇×T

)
. (10)

Taking the scalar product of ∇q̄ with (9) yields

ρ0v′q′ · ∇q̄ = −ρ0∇q̄ ·K∇q̄ +∇ · (T×∇q̄). (11)

As seen from (11), both diffusive and rotational components of the eddy flux of the tracer

project onto the mean gradient ∇q̄, and therefore affect the rate of conversion of the mean

tracer variance Φ into the eddy variance φ̄. The advective part of the flux described by

B is conservative in the sense that it only redistributes Φ, but does not convert it into φ̄.

Note that in [Nakamura, 2001], the term ρ0v′q′ · ∇q̄ was approximated entirely through

the diffusive flux.

Our next step is to solve for K and T. Equating ρ0v′q′ ·∇q̄ from (7) and (11), we obtain

∇ · (ρ0vφ + T×∇q̄ +∇×G) = ρ0∇q̄ ·K∇q̄ + (D′ − ∂tρ0φ̄), (12)
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where G is another gauge vector. Greatbatch [2001] proposed a generalization of the flux

decomposition of Marshall and Shutts [1981]. In particular, it was suggested to associate

the diffusive part, ρ0∇q̄ ·K∇q̄ with the local, irreversible removal of the variance φ̄ by

a small-scale diffusion (and/or a reversible change due to a non-stationarity), and the

rotational part with the advection of the eddy variance. Mathematically, this assumption

allows one to equate the left- and right-hand sides of (12) to zero separately:

T×∇q̄ = −ρ0vφ, (13)

ρ0∇q̄ ·K∇q̄ = ∂tρ0φ̄−D′, (14)

where in (13) we put G = 0. It is necessary to emphasize that the above flux decomposi-

tion is only an assumption which allows us to obtain the two equations (13) and (14), and

as such it is not unique. Note that (13) is applicable to finite amplitude eddies because

vφ = v̄φ̄ + v′φ.

In this paper we realize that there is a deficiency in the decomposition (13) and (14), and

suggest a way to modify it. In order to demonstrate this, we integrate (12) over the volume

inside a closed q̄ surface. This is certainly applicable to horizontal or meridional planes

in two dimensions. In the meridional plane, if the contour is not closed the integration

should be performed from pole to pole between two different contours q̄ = const. Denoting

the area of integration by V and the corresponding bounding surface by S, we obtain

∫

S
ρ0vφ · n̂dS =

∫

V
ρ0∇q̄ ·K∇q̄dV +

∫

V
(D′ − ∂tρ0φ̄)dV, (15)

where n̂ = ∇q̄/|∇q̄| is the unit vector normal to the surface. As seen from (15), the

variance flux vφ cannot entirely be attributed to the rotational part T×∇q̄, as in (13),

because
∫
S T×∇q̄ · n̂dS = 0. In other words, (15) represents an integral rate of conversion
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between the tracer variances Φ and φ̄ inside the volume V (cf. (11) ). Unless the volume V

covers the entire domain of integration with no variance fluxes across the outer boundaries,

the components of the flux ρ0vφ normal to the surface S contribute to this rate of change.

As a result, variance fluxes contribute to the integral conversion rate between Φ and φ̄

represented by the second term in (15), and, consequently to K. To account for this, we

partition the eddy variance flux into components normal and parallel to the isosurface q̄

ρ0vφ = α∇q̄ + b×∇q̄. (16)

This expansion is unique, and the coefficient α and the vector b are given by

α = |∇q̄|−2(ρ0vφ · ∇q̄), b = |∇q̄|−2(∇q̄ × ρ0vφ). (17)

The decomposition (13) and (14) can now be modified to associate the divergence of the

flux of eddy variance that is normal to surfaces q̄ = const with the large-scale diffusion of

q̄, and the part of ρ0vφ tangential to q̄ = const surfaces with the “rotational” flux T×∇q̄:

T = −b, (18)

ρ0∇q̄ ·K∇q̄ = ∂tρ0φ̄−D′ +∇ · α∇q̄. (19)

Thus, we have a closed set of equations for determining the vector streamfunction B

provided that the symmetric macro-scale “diffusion” tensor K is known: (10), (17), and

(18). This is not the case for K because all the components of the tensor cannot be found

unambiguously from the only equation (19). However, it is convenient to introduce an

assumption that the eddy diffusion is isotropic, i.e., K = KI, where I is the unit matrix.

This allows a unique definition for the only eddy diffusion coefficient K from (19):

K = ρ−1
0 |∇q̄|−2

(
∂tρ0φ̄−D′ +∇ · α∇q̄

)
. (20)
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In the introduced diagnostics, ∇ · α∇q̄ in (20) is the new term compared to Greatbatch

[2001] in the definition of K, although the expression (18) for the rotational streamfunction

T is the same as in Greatbatch [2001]. In Nakamura [2001], the divergence of the entire

variance flux is associated with K, and no rotational component contribution to the

advective streamfunction B is given. Note that K > 0 implies transfer down the mean

gradient ∇q̄. It follows that local growth of eddy variance, ∂tρ0φ̄ > 0, results in transport

down the mean gradient, as does the local irreversible removal of φ̄, −D′ > 0. On the

other hand, the divergence of the flux of eddy variance normal to iso-surfaces (contours)

of q̄ can have either sign: divergence contributes to the downgradient transfer of q̄, and

convergence to the upgradient transfer of q.

The assumption of isotropic diffusion also simplifies (10): the term containing K∇q̄

drops out since ∇q̄ ×K∇q̄ = 0. With (18) this gives the equation for the vector stream-

function B:

B = |∇q̄|−2∇q̄ ×
(
ρ0v′q′ +∇× b

)
≡ B1 + B2. (21)

In (21) we introduced the notations B1 for the part of the streamfunction B associated

with the flux ρ0v′q′, and B2 for the part due to ∇ × b, or, in turn, due to the variance

flux ρ0vφ. Now the eddy induced velocity can be found from the streamfunction B:

ρoveddy = ∇×B = ∇×B1 +∇×B2 ≡= ρov1 + ρov2, (22)

where v1 is the eddy velocity component due to the flux ρ0v′q′ in (21), and v2 is due to

the flux of eddy variance ρ0vφ. These velocities should be added to the Eulerian-mean

velocity, v̄, to obtain the net transport velocity for the tracer q̄, v∗:

v∗ = v̄ + veddy = v̄ + v1 + v2. (23)
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v1 is related to the eddy induced velocity introduced in TEM (but generalized since we

use ∇q in (21), rather than the vertical gradient of q), whereas v2 appears as a correction

associated with the rotational component of the eddy flux.

3. Results from the numerical model

In this section we apply the diagnostic framework presented above to the fields simulated

with the COMMA-LIM (Cologne Model of the Middle Atmosphere - Leipzig Institute for

Meteorology). It is a three-dimensional finite-difference global circulation model extending

up from 0 to slightly above 135 km with a log-pressure vertical coordinate z = −Hln(p/ps),

where H = 7 km and ps is the reference pressure at the lower boundary. The model has

64 grid points in the longitude direction, 36 in the latitude, and 48 in the vertical which

represents resolution of approximately 5◦ in the horizontal and 2.87 km in the vertical.

Details of the model’s architecture can be found in [Fröhlich et al., 2003]. The results we

are to analyze were simulated for perpetual July. After the initial spin-up to establish an

almost equilibrium state, the model was run for an additional 10 days to collect data with

time interval of 2 hours. This was done in order to have a good temporal resolution for

eddies. Among those in the (MLT), the most persistent are the solar tide, stationary and

various travelling planetary waves.

Figure 1 presents a zonal mean distribution of the simulated temperature (upper panel),

and the corresponding monthly mean climatology for July from the COSPAR Interna-

tional Reference Atmosphere (CIRA) (lower panel). It is seen that the model successfully

reproduces the raised winter stratopause, very cold summer mesopause (although almost

20 degrees warmer than in CIRA), and the overall temperature distribution. The latter is

mostly determined by the meridional circulation and eddy motions including the param-
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eterized ones. Comparison of other elements of the model circulation like tides, planetary

waves, zonal mean wind with observations also shows that the COMMA-LIM reproduces

the circulation of the Middle Atmosphere reasonably well [Fröhlich et al., 2003]. Thus,

the simulated fields can serve as a proxy for the circulation of the real Middle Atmosphere.

In what follows, the averaging operator consists of a time average over the last 10 days

of integration (after the model has reached an equilibrium state corresponding to the

monthly mean July) followed by a zonal average. All formulae from the previous section

can easily be converted to this two-dimensional case by putting ∂x{·} = 0, and consider-

ing only x-components of the vector streamfunctions: e.g., B = (B, 0, 0), T = (T, 0, 0),

b = (β, 0, 0). More explicit expressions are given in the Appendix. We apply the diagnos-

tics from the previous section to the transport of the potential temperature (q ≡ θ), since,

first, the latter is the fundamental quantity in geophysical fluid dynamics, and second,

because it allows a direct comparison with the residual circulation of Andrews and McIn-

tyre [1976]. There are strong radiative sources and sinks for the potential temperature in

the atmosphere, and therefore, it cannot be considered as an exactly conservative scalar.

The results will be shown in the global domain extending from z=65 to 125 km covering

the mesosphere and lower thermosphere. Note that the top altitude is approximately

one standard atmospheric height below the upper boundary of the domain of integration.

Thus we significantly reduce a contamination of the fields associated with the reflection

at the top levels of the model.

The latitude-altitude cross-section of the zonal mean potential temperature, θ̄, is pre-

sented in Figure 2a. Note that it has an order of tens thousand K’s in the MLT because of

the exponential growth with height: θ = T exp(κz/H), where T is the temperature as in
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Figure 1, κ = R/cp, cp is the specific heat at constant pressure. It is seen that the lines of

constant θ̄ are mostly horizontal, especially in the thermosphere. Below the mesopause,

the isolines are tilted downward from the summer hemisphere toward the winter hemi-

sphere as a result of seasonal differences in radiative sources. Meridional and vertical

fluxes of potential temperature due to resolved eddies, v′θ′ and w′θ′, are shown in Fig 2b

and 2c, correspondingly. The meridional heat flux is mostly poleward in the both hemi-

spheres, has a more complex structure near the equator, and its magnitude varies from

-1.5 x 105 to 3 x 105 m s−1K. The vertical flux is downward practically throughout the

entire Middle Atmosphere with the magnitude of -1.4 x 103 m s−1K in the tropical lower

thermosphere. This structure of the potential temperature fluxes with peaks centered

around the equator occurs mostly due to the diurnal and semidiurnal tides.

Besides the fluxes associated with resolved eddies, those due to unresolved subgrid-scale

motions must also be taken into account. In the Middle Atmosphere, these are primarily

associated with parameterized gravity waves (GW). For any GW drag scheme employed

by the model, the eddy flux of temperature can be estimated using formulae (42) and

(43) of Medvedev and Klaassen [2003]. Since horizontal propagation of gravity waves is

commonly neglected in GW drag parameterizations, including the multiple-wave Lindzen

scheme utilized here, only the vertical component of the eddy flux of potential temper-

ature, w′θ′GW , should be considered. It is plotted in Figure 2d. Most of the potential

temperature flux due to parameterized gravity waves is concentrated in midlatitudes in

both hemispheres with stronger fluxes in the winter hemisphere (peak values up to 140

m s−1K near the mesopause). This pattern forms because stronger filtering of both east-

ward and westward travelling GW harmonics in the summer hemisphere considerably
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reduces fluxes of propagating gravity waves in the MLT. Overall, w′θ′GW exceeds fluxes

due to resolved waves below approximately 110 km, but the latter significantly dominate

above. In our calculations ahead, we shall use the sum of the fluxes shown in Figure 2c

and 2d. It is seen from the Fig. 2 that the eddy fluxes of potential temperature are mainly

directed down the gradient of the mean potential temperature, ∇θ̄. Indeed, calculations

(not shown here) render the conversion term in the RHS of (6) and (7), ρ0v′θ′ · ∇θ̄, neg-

ative almost everywhere in the MLT. Therefore, in the meridional plane, eddies provide

mainly a sink of the variance of the mean potential temperature, Φ = θ̄2/2, (or the avail-

able mean potential energy) into the reservoir of eddy variance φ̄ = θ′2/2 (or the available

eddy potential energy). This agrees well with the concept of large-scale diffusion induced

by eddies.

Horizontal and meridional fluxes of eddy variance, vφ and wφ, are depicted in Figure 3a

and 3b, correspondingly. We remind the reader that v and w are the full velocities

which include both mean and eddy components. It is seen from the figure that these

fluxes are concentrated in the tropics since the eddy motions at low latitudes associated

with the solar tide and travelling planetary waves are stronger there. The magnitude

of vφ varies from -15 to 18 m s−1K2, and from -0.08 to 0.05 m s−1K2 for wφ, and they

form a complex set of cells. Figure 3c presents the “rotational” streamfunction, T =

−|∇θ̄|−2ρ0(wφ∂yθ̄ − vφ∂z θ̄) ≡ −β, calculated using (17) and (18). As follows from (21),

the curl of T = (T, 0, 0) must be added to the eddy flux ρ0v′θ′ in order to calculate the

total eddy streamfunction B. This flux associated with the transport of eddy variance is

pointed along the lines of constant T , such that local minima of T lie to the right (and

the local maxima to the left) of its direction. Fig. 3c shows that the “rotational” flux
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forms a set of cells that alternate with height and are tilted downward and towards the

equator.

The components of the advective streamfunction are plotted in Figure 4. The stream-

function associated with the advection by the zonal mean motions,

ρov̄ = ρo(0, v̄, w̄) = ∇× (BEul, 0, 0), (24)

is given in Figure 4a. It is seen that the Eulerian-mean transport is mostly cross-

hemispheric with a strong clockwise cell near the equator. Descending and ascending

motions near the poles are mostly due to the Eulerian mean radiative cooling and heat-

ing in the winter and summer hemispheres, respectively. The part of the eddy induced

streamfunction associated with the heat flux ρ0v′θ′, B1, is plotted in Fig. 4b. This

part is similar to the eddy-induced portion of the residual circulation in the Transformed

Eulerian-mean formalism of Andrews and McIntyre [1976]. Scale analysis of the com-

ponents B1 = ρ0|∇θ̄|−2(w′θ′∂yθ̄ − (v′θ′∂z θ̄) (see also (28) ) shows that w′θ′ ¿ v′θ′ and

∂yθ̄ ¿ ∂z θ̄), such that B1 ≈ ρ0(∂z θ̄)
−1v′θ′. The latter expression coincides with the one for

the TEM streamfunction [Andrews et al., 1987]. The circulation it describes is purely due

to eddy motions, and is directed mostly against the Eulerian-mean, B̄. The part of the

eddy induced streamfunction associated with the “rotational” flux correction, B2, is shown

in Fig 4c. It does not exactly follow the streamfunction T , but clearly has similar struc-

ture: the series of tilted cells concentrated near the equator. This part of the advective

circulation is primarily caused by thermal tides which are strong in the model. Scaling

analysis of B2 using data from Fig. 2 and 3 shows that B2 ≈ (∂z θ̄)
−1∂z[ρ0vφ(∂z θ̄)

−1],

which coincides with the expression for the Temporal Residual Mean rotational stream-

function of McDougall and McIntosh [1996]. The total residual streamfunction, the sum
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of B̄, B1 and B2, is plotted in Figure 4d. It represents mainly the pole-to-pole transport

from the summer hemisphere into the winter one. The strong equatorial circulation cell

in the Eulerian-mean circulation is being canceled mainly by B1, as in the stratosphere

[Andrews et al., 1987]. The “rotational” component of the streamfunction B2 plays a

minor role compared to B1 throughout the domain of integration. The contribution of

all parts of the advective circulation can be seen in more details in Figure 5 where the

corresponding components of the meridional transport velocity v∗ = v̄+v1+v2 are plotted

at z ≈ 110km. Here the velocities are defined as follows (see also Appendix):

ρo(0, v1, w1) = ∇× (B1, 0, 0), ρo(0, v2, w2) = ∇× (B2, 0, 0). (25)

The velocity v1 induced by the eddy heat flux ρ0v′θ′ has a comparable magnitude (up to

11 m s−1) as the Eulerian-mean one, v̄, (the peak value is 21 m s−1), but directed mostly

opposite. The velocity v2 due to the eddy flux of heat variance, ρ0vφ, is several times

smaller (3.5 m s−1 in the maximum) than v̄ and v1. Its direction may either coincide with

v1 (as in the Northern Hemisphere), or be the opposite (as in the Southern Hemisphere).

The diffusion coefficient K can be evaluated using (20) under the steady state condition

(∂t → 0)

K = ρ−1
0 |∇q̄|−2

(
−D′ +∇ · α∇q̄

)
≡ K1 + K2, (26)

where the nonhomogeneous source/sink term D′ is calculated from (7) and ∂t → 0. In

(26) we split K into two parts, K1 and K2, associated with D′, and with the divergence of

the component of the flux of eddy variance flux that is normal to isolines of θ̄, respectively.

The diffusion coefficient K1 is the same as in Nakamura [2001] and Greatbatch [2001]. It

attributes the small-scale dissipation of eddy variance, D′, to the macro-scale diffusion. As
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seen from Figure 6a, K1 is positive almost everywhere in the domain. This is because the

main diabatic effect on eddies is radiative damping, i.e. D′ < 0. The diffusion coefficient

K1 has magnitude of several hundred of m2 s−1 in the MLT and increases with height. The

magnitude and vertical distribution are consistent with those observed by Lübken [1997,

Figure 4], those estimated theoretically by Chandra [1980, Figure 4] for momentum eddy

diffusivity, and those obtained in the simulations with the middle atmosphere GCM with

parameterized gravity waves for the thermoconductivity by Medvedev and Klaassen [2003,

Figure 7]. Comparison with eddy fluxes in Figure 2 shows that the equatorial maximum

of K1 is mainly due to the resolved eddies, while the two midlatitude peaks at ≈95 km

largely result from the parameterized gravity waves.

Contrary to K1, the coefficient K2 has alternating signs, as depicted in Figure 6b. It

is seen from Figure 3a and 3b that the component of the flux of eddy variance that is

normal to isolines θ̄=const has either sign, as does its divergence, ∇ · α∇q̄, and therefore

K2 (which in our case is still lower than the upper boundary of the domain of integration).

The magnitude of K2 rises sharply with height. It varies from -2500 to 3000 m2s−1 near

the top of the domain. The latitudinal cross-sections of the diffusion coefficient K and its

components K1 and K2 at z=110 and 120 km are shown in Figure 7. The altitude 110 km

is where K1 and K2 have about the same magnitude, albeit a similar latitudinal structure

with an equatorial peak, two weaker maxima at higher latitudes, and the corresponding

minima in between. Below 110 km, the contribution of K2 to K can be neglected. Above

this height, K2 clearly dominates K1, as seen in Figure 7b.

4. Discussion
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Although non-unique, diagnosis of transport in the form of advection and diffusion

based on the representation of the eddy fluxes in the flux-gradient form (1) is quite use-

ful and practical. Perhaps, the Transformed Eulerian Mean (TEM) is the most widely

used example of this formalism in atmospheric applications. Such diagnostic implies that

the eddy flux of the tracer can be subdivided into advective and diffusive components.

The advective part describes a transport of the mean tracer by an “eddy-induced” non-

divergent velocity. The diffusive part is associated with a removal (or injection, in the

case of “negative” diffusion) of Φ, and represents an eddy flux of tracer along the principal

axes of the symmetric part of K. The direction of the diffusive flux necessarily projects

onto the mean gradient ∇q̄. The non-uniqueness of such diagnostics shows up mathemat-

ically in the fact that the tensor K has more components than the equations to define

them (unless in the one-dimensional case). Physically, the ambiguity of the flux-gradient

relation presents itself as a lack of criteria to differentiate between the advective and dif-

fusive transport in the direction along the iso-surfaces in the Eulerian frame of reference.

Approaches based on Lagrangian-type averaging have been proposed to circumvent this

problem, e.g., [Nakamura, 1996; Haynes and Shuckburgh, 2000]. However, in this paper we

consider only the transport diagnostics based on the Eulerian averaging and flux-gradient

relation (1).

A schematic representation of the tracer variance conversion is given by (6) and (7),

and is illustrated in the box diagram of Figure 8. Diagrams of this sort are often used

to visualize exchanges between the eddy and “mean” components of energy, the other

quadratic quantity of field variables. The reservoirs Φ and φ̄ denote the mean and eddy

variances, respectively, contained in an infinitesimal volume dV . The conversion term
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appears as an “eddy induced” source/sink with respect to the mean variance Φ. It is

represented in (11) and in the diagram by the (i) diffusive and (ii) rotational fluxes.

On the other hand, the conversion is determined by the balance between the small-scale

source/sink D′, the transience (if the eddies are statistically unsteady), and the divergence

of the eddy variance flux. When integrated over the volume between two surfaces, q =

constant, the term (ii) associated with the rotational flux does not contribute to the

variance conversion, and neither does the tangential component of ρ0vφ (also denoted by

(ii) in Figure 8). In the paper, we used this property to equate the terms marked by (ii)

to provide a required closure.

Using simulations with the global circulation model COMMA-LIM, we have shown that

for potential temperature in the meridional plane in the MLT, the main effect of D′ is

radiative damping, i.e. D′ < 0. The components of the eddy variance flux ρ0v′θ′2/2

have either sign, as does its divergence. This means that the part of the total diffusion

coefficient determined by D′, K1 in (26), is always positive, whereas the other part, K2,

can have both signs. Thus, K1 describes a downgradient transport of the mean potential

temperature which removes its mean variance, and ultimately, channels it out of the

system through the radiative cooling D′. Only K1 serves as a diagnostic of an irreversible

mixing of θ̄ due to zonally asymmetric eddies. K2 describes a reversible conversion of

the mean variance due to local transformations of the eddy variance. In an insulated

system (with no fluxes through the boundaries), the “diffusion” associated with K2 does

not change the total mean variance in the volume.

One aspect which needs to be mentioned is that the tracer transport velocity and

diffusivity obtained within the presented diagnostic framework depend on the structure
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of the tracer distribution, or more precisely, on the distribution of the mean tracer and

eddy correlations v′q′ and vφ. This raises a question of whether the transport and mixing

are the properties of the flow, or the functions of a particular tracer. There are indications

that initially uncorrelated tracers tend to form a linear compact relation [Plumb and Ko,

1992], thus yielding the same velocities and diffusivities for all the tracers. However,

one can only expect compact relationships between fairly long-lived tracers for which the

transport effects can largely determine the shape of the tracer distributions. It is unlikely

that many constituents in the MLT (where photochemical lifetimes are generally very

short) would satisfy this. Clearly, this problem is out of the scope of the present paper.

Further scrutiny is required to answer the question: When (or if at all) the same K-tensor

could be applied to describe the eddy transport of many tracers.

5. Summary

We present a formalism to describe the eddy transport in terms of the mean tracer. It

is based on the Eulerian averaging and flux-gradient relation (1). Following Greatbatch

[2001], we decompose the eddy flux of the tracer into advective, diffusive, and rotational

parts. The mean tracer conservation equation contains only a divergence of the eddy flux,

and therefore, any non-divergent function can generally be added to a particular solution

to satisfy the equation. The rotational flux arises as such a function, or gauge. To provide

a closure, we employ a flux-separation technique similar to that of Marshall and Shutts

[1981]. In this paper, we introduce a modification to the technique, extending that used

by Greatbatch [2001]. Instead of attributing the rotational flux to the entire flux of eddy

variance vφ, we associate the component of vφ that is tangential to surfaces q̄ = const

with the rotational flux, and the normal component of vφ with the diffusive part of v′q′.
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In the core of this modification lies the observation that only a component of the eddy

variance flux directed along the mean gradient contributes to the conversion between the

mean and eddy variances in a finite volume V bounded either by a surface of constant q

or two surfaces q = constant.

We obtained an expression (21) for the advective streamfunction B which is the sum of

the TEM streamfunction B1 (but more general than in [Andrews and McIntyre, 1976]),

and the rotational component B2. The latter is similar to the one derived within the

framework of Temporal Residual-Mean [McDougall and McIntosh, 1996], and is the same

as in [Greatbatch, 2001]. The rotational part is not considered in the diagnostic scheme

of Nakamura [2001]. The corresponding transport velocities v1 and v2 are given by (22).

While v1 is expressed in terms of eddy fluxes v′q′ (similar to the TEM), the component v2

accounts for the flux of eddy variance of the tracer vq′2. For the diffusive flux, we obtain

a diffusion coefficient (20). It can be represented through the sum of K1 and K2, where

K2 results from the modification of the eddy flux decomposition, and is a function of the

flux of eddy variance.

In this paper, we explicitly evaluate the transport velocities v1 and v2 given by (25),

and components of the diffusion coefficient K1 and K2 for the zonal mean potential tem-

perature from the fields simulated with the COMMA-LIM. It is demonstrated that K2

can be neglected with respect to K1 below approximately 110 km, but its contribution to

the total diffusion coefficient dominates above this height. We show that the component

of the eddy induced velocity associated with the rotational flux, v2, represents a smaller

correction to the conventional Transformed Eulerian-Mean velocity, and therefore can be

ignored in the MLT below at least 125 km.
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Appendix

As was suggested by a reviewer, here we provide the explicit formulae applicable for the

zonally averaged fields in the 2-dimensional meridional plane.

The vector streamfunctions B and b in (21) are then reduced to the scalar streamfunc-

tions B = B1 + B2 and β, respectfully. Using the letter subscripts as the notations for

the corresponding partial derivatives in this Appendix only, we obtain from (17)

β =
1

(q̄y)2 + (q̄z)2
(ρ0wφq̄y − ρ0vφq̄z), (27)

where φ = q′2/2 is the eddy variance, and v = v̄ + v′, w = w̄ + w′ are the full velocities.

Then, from (21), we have

B1 =
1

(q̄y)2 + (q̄z)2
(ρ0w′q′q̄y − ρ0v′q′q̄z), (28)

B2 = − 1

(q̄y)2 + (q̄z)2
(βyq̄y + βz q̄z). (29)

The meridional components of the eddy induced velocity can be written using (22):

veddy = v1 + v2 = ρ−1
0 (B1)z + ρ−1

0 (B2)z, (30)

weddy = w1 + w2 = −ρ−1
0 (B1)y − ρ−1

0 (B2)y. (31)
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Figure 1. Zonal mean temperature simulated in the COMMA-LIM (upper panel), and monthly

mean temperature from CIRA for July. Contour interval is 20K.
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Figure 2. a) Zonal mean potential temperature in thousands of K. b) Meridional flux v′θ′

due to resolved eddies in thousands of m s−1K. Contour interval is 50·103 m s−1K. c) Vertical

flux w′θ′ due to resolved eddies. Contour interval is 200 m s−1K. d) Vertical flux w′θ′GW due to

parameterized subgrid-scale gravity waves. Contour interval is 20 m s−1K.
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Figure 3. Meridional (a) and vertical (b) fluxes of eddy variance, vφ and wφ, correspondingly.

Contour intervals are 3 m s−1K2 for (a) and 0.01 m s−1K2 for (b). c) “Rotational” streamfunction

T .
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Figure 4. Height-latitude cross-sections of the advective streamfunctions: (a) due to the

Eulerian-mean advection (BEul); (b) due to the eddy fluxes ρ0v′θ′, B1; (c) due to the rotational

fluxes associated with ρ0vφ, B2; (d) the total residual transport streamfunction, B̄ + B1 + B2.
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Figure 5. Components of the meridional velocity calculated from (24) and (25) at z = 110

km.
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Figure 6. Components a) K1 and b) K2 of the diffusion coefficient calculated using (26).

Contour intervals are 100 m2s−1 for (a) and 500 m2s−1 for (b).
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Figure 7. Latitudinal cross-sections of the diffusion coefficient K and its components, K1 and

K2, at a) z=110 km and b) z=120 km.

Figure 8. A schematic representation of the tracer variance cycle (6) and (7). The reservoirs

Φ and φ̄ respectively represent mean and eddy variances of a tracer in an infinitesimal volume

dV . The direction of the arrows correspond to positive values of the terms they denote.
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