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ABSTRACT

A new formula is derived for the asymptotic form of the magnitude of an autocorrelation coefficient for

coherent Doppler sonar. The autocorrelation magnitude is shown to be a biased estimator in the limit of

infinite ensemble length. Numerical simulation of a Gaussian random process is used to verify the asymptotic

formula and to show that a bias persists for finite pulse-pair averages. Validity of the asymptotic formula is

also confirmed using a high-fidelity coherent Doppler sonar simulation, and from sonar measurements in

a towing tank. It is shown that the distribution of observed autocorrelation coefficients is well predicted by

a Gaussian random process once the autocorrelation bias has been removed.

1. Introduction

Backscatter autocorrelation is the fundamental mea-

surement in pulse-to-pulse coherent Doppler sonar

(Garbini et al. 1982; Lhermitte and Serafin 1984). While

velocity is determined from the phase of the complex

autocorrelation coefficient, the coefficient magnitude is

often used as a measure of data quality. Corresponding

to each velocity measurement, many commercially

available instruments provide a measure of autocorre-

lation, for example, as a coefficient between 0% and

100%. Recommended minimum values for the auto-

correlation coefficient assist the user in collecting high-

quality measurements and diagnosing instrumentation

problems when necessary. In addition to qualitative as-

sessment, autocorrelation can also provide quantitative

information on the expected magnitude of measurement

errors. For example, pulse-to-pulse autocorrelation has

been used to identify and replace spurious Doppler ve-

locimeter measurements in the surf zone (Elgar et al.

2005). Also, the relationship between velocity measure-

ment error and autocorrelation has been determined

through laboratory testing of a coherent Doppler sonar

(Zedel et al. 1996).

For a sequence fzng of complex-valued backscatter

samples, the autocorrelation at a lag of k pulse-to-pulse

intervals is

R(kt) 5 E(zn*zn1k), (1)

where E denotes expected value, * denotes complex con-

jugation, and t is the time interval between successive

acoustic transmissions. The autocorrelation coefficient

is defined as

r 5

����R(t)

R(0)

����5 1

s2
jE(zn*zn11)j, (2)

where s2 is the variance of the sequence fzng. By defi-

nition, r is a number between zero and one that ex-

presses the degree of pulse-to-pulse autocorrelation.

In practice, autocorrelation is estimated from a finite

sequence z1, . . . , zM corresponding to an ensemble of

M pulses (Zrnić 1977),

R̂(t) 5
1

M 2 1
�

M21

n51
zn*zn11. (3)

Zedel et al. (1996) define the following autocorrelation

coefficient as an estimate of r:

r̂ 5

���� �
M21

n51
zn*zn11

����
�

M21

n51
jzn*zn11j

. (4)
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The above expression has the desirable property that r̂ is

a number between zero and one. Also, the numerator

resembles (2) in the sense that expected value has been

replaced with a finite sum.

For applications in sediment transport, current mea-

surement, and medical ultrasound, scatterers consist of

a large number of particles. Each backscatter sample z is

therefore well described by a complex Gaussian distri-

bution, that is, z 5 x 1 iy, where x and y are independent

normally distributed random variables with equal vari-

ances. In general, a time series of backscatter samples is

a nonstationary random process because Doppler fre-

quency, autocorrelation, and amplitude are functions of

time. However, in the analysis of coherent Doppler

systems, backscatter samples are frequently modeled as

being drawn from a wide-sense stationary (WSS) ran-

dom process with Gaussian power spectral density

(Garbini et al. 1982; Lhermitte and Serafin 1984; Zedel

et al. 1996),

Pzz 5
s2

sf

ffiffiffiffiffiffi
2p
p e2( f2f

D
)2/2s 2

f , (5)

where fD is the mean Doppler frequency and sf denotes

the spectral width. In this article, the term ‘‘Gaussian

distribution’’ refers to the probability distribution of

a single backscatter sample. The term ‘‘Gaussian random

process’’ refers to a time series where (i) each sample

obeys a Gaussian distribution, and (ii) the power spec-

trum of the time series is a Gaussian function as in (5).

Autocorrelation is determined from the inverse Four-

ier transform of the power spectral density

R(t) 5
s 2

sf

ffiffiffiffiffiffi
2p
p

ð‘

2‘

e2( f2f
D

)2/2s2
f ei2pft df

5 s 2e22p 2s 2
f t 2

ei2pf
D

t. (6)

At an autocorrelation lag of one pulse-to-pulse interval,

the autocorrelation coefficient r is

r 5

����R(t)

R(0)

����5 e22p2s2
f t2

. (7)

Therefore, r determines the width of the Doppler spec-

trum, and hence the variance of velocity measurements.

To compare coherent Doppler sonar observations

with expected performance based on a Gaussian ran-

dom process, it is necessary to examine the relationship

between the true autocorrelation coefficient r and its

estimate r̂. As increasingly more pulse pairs are averaged,

one would expect the accuracy of the autocorrelation

estimate to improve. Nevertheless, it is shown in this ar-

ticle that r̂ is a biased estimator both for finite averages

and in the limit of infinite ensemble length. However, the

relationship between r̂ and r may be inverted to obtain

unbiased estimates of autocorrelation from biased sam-

ples of r̂. The results presented in this article allow the-

oretical predictions of velocity variance, such as those in

Zrnić (1977), to be expressed in terms of the observed

autocorrelation estimate rather than the true (but typi-

cally unknown) autocorrelation r. Because the effective-

ness of pulse-pair averaging depends on the correlation

between successive measurements, a sonar designer may

wish to know how much averaging is required to suffi-

ciently attenuate measurement errors for a given observed

coefficient r̂.

This article is organized as follows. In section 2, a new

formula is presented for the asymptotic estimator r̂
‘

5

limM/‘
r̂. In section 3, properties of r̂ are determined for

finite pulse-pair averages via numerical simulation. Sec-

tions 4 and 5 describe the apparatus and methods em-

ployed in a towing tank experiment. Experimental results

appear in section 6, followed by a discussion in section 7.

Our conclusions are summarized in section 8.

2. Theory

The autocorrelation coefficient in (4) may be written as

r̂ 5

����� 1

M 2 1
�

M21

n51
zn*zn11

�����
1

M 2 1
�

M21

n51
jznjjzn11j

. (8)

As M / ‘, the numerator converges to jR(t)j 5 rs2.

Assuming that each sample zn is described by a Gaussian

distribution, the denominator converges to the mean m

of the product of two dependent Rayleigh random var-

iables jznj and jzn11j. The product jznkzn11j is described

by the probability distribution (Simon 2002, chapter 6)

p(r) 5
4r

s4(1 2 r2)
K0

�
2r

s2(1 2 r2)

�
I0

�
2rr

s2(1 2 r2)

�
, (9)

where r 5 jznkzn11j, K0 is a modified Bessel function of

the second kind, and I0 is a modified Bessel function of

the first kind. The mean m is determined from

m 5

ð‘

0
rp(r) dr

5
4

s4(1 2 r2)

ð‘

0
r2K0

�
2r

s2(1 2 r2)

�
I0

�
2rr

s2(1 2 r2)

�
dr.

(10)

In the appendix, the integral is evaluated in terms of the

complete elliptic integral of the second kind E(k),
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m 5
s2(11r)

2
E

2
ffiffiffi
r
p

1 1 r

� �
. (11)

The asymptotic estimate is, therefore,

r̂
‘

5
rs2

m
5

2r

(11r)E
2
ffiffiffi
r
p

11r

� � . (12)

For small values of r, the first-order Taylor series is

r̂
‘

’
4r

p
as r / 0. (13)

For values of r near one, the first-order Taylor series is

given by

r̂
‘

’
r 1 1

2
as r / 1: (14)

The asymptotic estimate and asymptotic ratio r̂
‘

/r are

plotted in Figs. 1a,b, respectively. It is evident that the

asymptotic estimate is biased for r , 1.

3. Numerical simulation

a. Gaussian random process

Numerical simulations of a complex Gaussian process

were performed using the MATLAB randn generator.

Let z1, . . . , zM denote an ensemble of M independent

identically distributed samples from a complex Gaussian

distribution with zero mean and unit variance. For

a Gaussian power spectrum, the backscatter autocorre-

lation sequence Rk is given by (6) and (7),

Rk 5 s2rk2

ei2pf
D

tk. (15)

Let z denote samples z1, . . . , zM arranged as a vector.

The corresponding covariance matrix C
z

is given by

(Kay 1993, chapter 15)

Cz 5

2
666664

R0 R
21 � � � R

2(M21)

R1 R0 � � � R
2(M22)

..

. ..
.

1 ..
.

RM21 RM22 � � � R0

3
777775. (16)

By definition, C
z

is Hermitian positive definite and

therefore can be written in terms of the Cholesky de-

composition (Watkins 2002, chapter 1)

Cz 5 U*U. (17)

Here, U is an upper triangular matrix with positive di-

agonal entries and U* denotes the conjugate transpose

of U. The vector z of independent samples z1, . . . , zM has

covariance matrix E(zz*)5 I. Simulated backscatter sam-

ples were generated using the transformation

z 5 U*z. (18)

Therefore, z has covariance matrix given by

E(zz*) 5 E(U*zz*U) 5 U*E(zz*)U 5 Cz (19)

as desired.

Samples of the autocorrelation estimate r̂ were gen-

erated from 107 simulated pings for ensemble lengths of

M 5 10, 20, 40, and 100, and true autocorrelation co-

efficients ranging from 0.2 to 0.98 in increments of 0.02.

For each pair (r, M), the mean autocorrelation estimate

was calculated as an approximation to the expected

value E(r̂). The ratio E(r̂)/r is plotted in Fig. 2, where

the dashed line is the asymptotic ratio r̂
‘

/r from (12).

Although the asymptotic ratio is only strictly valid for

M / ‘, simulations for larger values of M indicated that

in the interval of r $ 0.2, the autocorrelation ratio is

within 1% of the asymptotic ratio when M is greater

than or equal to 600.

FIG. 1. Asymptotic autocorrelation estimate r̂
‘

from (12) as a

function of the actual autocorrelation coefficient r. (a) The ideal

relation r̂
‘

5 r is represented (dashed line). In (b), the ratio r̂
‘

/r is

displayed.
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b. Coherent Doppler sonar model

Numerical simulation of steady flow was also per-

formed with the coherent Doppler sonar model described

in Zedel (2008). The model simulates pulse-to-pulse co-

herent scattering from a cloud of moving particles for

arbitrary multistatic sonar geometries. Physical effects

such as spherical spreading, acoustic absorption, frequency-

dependent beam patterns, transducer frequency response,

and receiver noise are included in the model. The model

supports simulation of arbitrary pulse shapes, including

the use of multiple carrier frequencies.

Simulations were performed for a monostatic sonar

measuring horizontal velocities of 0.5, 1.5, 3.0, and

4.5 m s21. In the model, the sonar was tilted 58 from

vertical to reproduce the geometry of the towing tank

experiment described in section 4. Parameters for the

coherent Doppler sonar simulation are listed in Tables 1

and 2.

The model was configured to record the result from

each ping in addition to calculating pulse-pair averages.

The true autocorrelation coefficient was approximated

by averaging over all simulated pings,

r ’
1

s2

���� 1

N 2 1
�

N21

n51
zn*zn11

����, (20)

where s2 is the variance of the backscatter sequence

fzng and N 5 2 3 105 is the total number of simulated

pings. The mean autocorrelation estimate E(r̂) was

calculated for ensemble lengths of M 5 10, 20, 40, 100,

and 1000. Figure 3 shows the ratio E(r̂)/r corresponding

to each velocity. As M is increased, the ratio converges

toward the asymptotic ratio r̂
‘

/r specified by (12).

4. Apparatus

A towing tank experiment was performed using the

multifrequency coherent Doppler sonar described in

Hay et al. (2008). Each circular piezocomposite trans-

ducer has a diameter of 2 cm, a nominal center fre-

quency of 1.7 MHz, and a bandwidth of approximately

1 MHz. Carrier frequencies, profiling range, range res-

olution, pulse length, pulse-to-pulse interval, and en-

semble length are configurable in software. The

dimensions of each sample volume are determined by the

beam pattern, carrier frequency, and range resolution.

Nominally, each sample point has a diameter of 2 cm and

a height of 3 mm. The parameters in Table 1 also apply

for the sonar used in the towing tank experiment.

The experiment was performed in the Marine Craft

Model Towing Tank at Dalhousie University. The tank

has horizontal dimensions of 30 m 3 1 m and a depth of

1 m. An instrumented carriage is propelled by an elec-

tric motor along rails mounted above the tank. Carriage

speed is computer controlled and programmable over

a range from 0 to 3.0 m s21. Constant speed is sustained

over a rail length of approximately 25 m. The towing

carriage and instrumentation are shown schematically

in Fig. 4. The sonar was rotated to point 58 aft (i.e.,

counterclockwise in Fig. 4) to avoid receiving multiple

reflections from the tank bottom. The sonar was located

on the tank center line with the center transducer 56 cm

FIG. 2. Estimated autocorrelation coefficients from simulation of

a Gaussian random process. Each curve represents the ratio E(r̂)/r

plotted as a function of the true autocorrelation coefficient r for

a fixed ensemble length M. The dashed line is the asymptotic ratio

r̂
‘

/r from (12).

TABLE 1. Coherent Doppler sonar parameters.

Parameter Value

Transducer center frequency 1.7 MHz

Transducer bandwidth 1.0 MHz

Receiver bandwidth 250 kHz

Carrier frequency 1.8 MHz

Transmit pulse length 4 ms

Ping interval 1.5 ms

Transducer diameter 2 cm

TABLE 2. Parameters for the coherent Doppler sonar simulation.

Parameter Value

Particle density 4720 L21

Receiver signal-to-noise ratio 10 dB

Simulation time step 12.5 ns

Simulation time 300 s
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above the bottom. Water in the tank was seeded with

agricultural lime. Prior to each run, approximately

0.5 kg of lime was added to replace scatterers lost to

settling. A rough estimate of sediment concentration

was 1 g L21.

5. Experimental procedure

Carriage speed was varied from 0.05 to 3.0 m s21 by

programming the desired speed into the towing tank

control system. Results are presented in section 6 for

velocities of 0.5, 1.5, and 3.0 m s21. The control system

software automatically calculated an acceleration and

deceleration profile to maximize the time at constant

speed subject to the tank length constraint. Two runs

were performed for each speed with a duration of 55 s,

or the time elapsed in traversing the entire tank length,

whichever was less. Carriage speed was recorded by the

control system.

Autocorrelation coefficients were recorded by the

sonar data acquisition system using a fixed ensemble

length of M 5 10. Because it was not possible to simul-

taneously record data with multiple ensemble lengths, an

indirect approach was taken to assess the validity of

simulations in section 3. For each carriage speed, the M 5

10 curve from Fig. 2 was used to infer the true autocor-

relation coefficient r from the mean of the observed es-

timates r̂. Histograms of towing tank autocorrelation

coefficients were compared with those from a Gaussian

random process, as described in section 6.

6. Results

In Table 3, the mean autocorrelation estimate E(r̂)

was calculated for towing carriage speeds of 0.5, 1.5, and

3.0 m s21 from the 41-cm range bin of the center

transducer receiver channel. Here, E(r̂) represents the

mean magnitude of observed autocorrelation coeffi-

cients, which is similar to the measure of data quality

reported by commercial instruments. Table 3 also lists

the corresponding true autocorrelation coefficients es-

timated from the M 5 10 curve in Fig. 2. These values

of r were used to generate autocorrelation coefficients

from a Gaussian random process, as described in sec-

tion 3.

Distributions of towing tank autocorrelation co-

efficients are shown in Fig. 5 for carriage speeds of 0.5,

1.5, and 3.0 m s21. Values of r̂ from the center trans-

ducer receiver channel were grouped in 30 equally

spaced bins and plotted as histograms. Dotted lines in

Fig. 5 represent distributions of r̂ from a Gaussian ran-

dom process with M 5 10 and r as listed in Table 3.

Dashed lines in Fig. 5 represent distributions of r̂ that

result from assuming that no bias exists, that is, that

r ’ E(r̂). Histograms were generated from 107 simulated

FIG. 3. Estimated autocorrelation coefficients from the coherent

Doppler sonar simulation. Each circle represents the ratio E(r̂)/r

plotted as a function of the true autocorrelation coefficient r for

ensemble lengths of M 5 10, 20, 40, 100, and 1000. The asymptotic

ratio r̂
‘

/r from (12) is shown (dashed line). For increasing values of

M, circles converge downward to the dashed line.

FIG. 4. Side view schematic of the towing tank showing the

multifrequency coherent Doppler sonar. Instrumentation was at-

tached to a carriage that moved along rails mounted above the

water. Transducer beam patterns are indicated (dashed lines).

TABLE 3. Estimated autocorrelation coefficients from towing

tank data.

Velocity (m s21) E(r̂) r from Fig. 2

0.5 0.990 0.977

1.5 0.948 0.899

3.0 0.817 0.713
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pings, with autocorrelation coefficients grouped in 200

equally spaced bins.

7. Discussion

The derivation of the asymptotic autocorrelation co-

efficient assumed a complex Gaussian probability dis-

tribution for each backscatter sample. However, it was

not necessary to assume a Gaussian power spectrum for

the time series because the asymptotic formula depends

only on the expected autocorrelation at a lag of one

pulse-to-pulse interval. The formula was presented in

terms of an elliptic integral. Although E(k) cannot be

expressed in terms of elementary functions, it may be

evaluated numerically, for example, with the ellipke

function in MATLAB.

Numerical simulation of a Gaussian random process

showed that the bias of the autocorrelation coefficient

increases for short ensemble lengths. For example, the

degenerate case of a single pulse pair results in a co-

efficient of one regardless of the actual pulse-to-pulse

autocorrelation. A longer ensemble length is necessary

to obtain meaningful autocorrelation estimates. As

shown in Fig. 2, a bias persists for all of the ensemble

lengths, with convergence to the asymptotic formula

occurring for M approximately equal to 600. The bias is

more significant for small values of the autocorrelation

coefficient. For practical applications where reasonably

high-quality data are obtained (say r $ 0.7), there is

negligible variation in the ratio r̂/r as M is varied.

However, a bias is still present for r $ 0.7, and in this case

the bias is well described by the asymptotic Eq. (12).

The coherent Doppler sonar model in Zedel (2008)

does not require any Gaussian assumption about the

backscatter probability distribution or the time series

power spectrum. The model describes the physics of

coherent scattering and accounts for the sonar geometry

and operating parameters, unlike the simulations of

a Gaussian random process in section 3. Simulations of

steady flow confirmed that the autocorrelation co-

efficient converges to the asymptotic formula as en-

semble length is increased. However, similarity between

Figs. 2 and 3 shows that simulation of a Gaussian ran-

dom process is sufficient to predict the bias of the au-

tocorrelation coefficient.

In Table 3, the mean observed autocorrelation esti-

mates from the towing tank satisfy E(r̂) . 0:8, which is

within the range of acceptable data quality for com-

mercial instruments. Although the towing tank experi-

ment was performed for a single ensemble length,

results in Fig. 5 validate the relationship between r̂ and r

for the M 5 10 curve in Fig. 2. When it is assumed that

r ’ E(r̂), instead of accounting for the autocorrelation

bias, simulated histograms in Fig. 5 do not match ex-

perimental observations. As expected, the discrepancy

increased with velocity due to backscatter decorrelation

from particle advection through the sonar sample vol-

ume. However, when the autocorrelation bias is re-

moved, simulated distributions of the autocorrelation

coefficient closely match experimental observations.

The towing tank experiment confirms the validity of the

Gaussian random process for predicting the bias of the

autocorrelation coefficient. One would therefore expect

towing tank observations to converge to the asymptotic

formula as the ensemble length is increased.

It would be interesting to repeat the towing tank ex-

periment with additional runs for each carriage speed

while recording the result from each ping. Autocorre-

lation coefficients could be calculated for a range of

ensemble lengths to demonstrate convergence to the as-

ymptotic formula, as in section 3, for the coherent Doppler

sonar simulation. Reproduction of Fig. 3 with experimental

FIG. 5. Distributions of measured and simulated autocorrelation

coefficients. A histogram of r̂ from the 41-cm range bin of the

center transducer 1.8-MHz receiver channel (solid lines). The

corresponding distributions from a Gaussian random process

where the autocorrelation bias has been removed using the M 5 10

curve in Fig. 2 are also shown (dotted lines). Simulated distribu-

tions with no bias correction are represented (dashed lines). Car-

riage speed is (top) 0.5 and (bottom) 3.0 m s21.
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measurements would require approximately 300 s of

data for each speed. At 3.0 m s21, the carriage would

need to travel 900 m, requiring 36 runs in the Dalhousie

University towing tank. For such an endeavor, a longer

tank or a continuously operated flume would be more

suitable.

Finally, we remark that the definition of the autocor-

relation coefficient is not unique. The coefficient con-

sidered in this article is an appropriate choice because

0 # r̂ # 1 and the numerator �z
n
*z

n11
is similar in form

to the expected value in the definition of autocorrela-

tion. However, any power or root of r̂ also provides

a measure of pulse-to-pulse autocorrelation while taking

values in the interval [0, 1]. The method presented in the

appendix could be applied to analyze the asymptotic

behavior of other coefficients. If the analysis turns out to

be intractable, one may resort to numerical simulation

as in section 3.

8. Conclusions

A new formula has been presented for the asymptotic

form of an autocorrelation coefficient for coherent

Doppler sonar. The derivation showed that the auto-

correlation coefficient is a biased estimator in the limit

of infinite ensemble length. Numerical simulation of

a Gaussian random process indicated that the bias per-

sists for finite pulse-pair averages. Furthermore, the bias

increases for shorter ensemble lengths. Validity of the

Gaussian random process was confirmed with numerical

simulation using a high-fidelity coherent Doppler sonar

model, and from sonar measurements in a towing tank

where the towing carriage traveled at constant speed.

The experiment showed that the distribution of ob-

served autocorrelation coefficients is well predicted by

a Gaussian random process once the autocorrelation

bias has been removed. Although other autocorrelation

coefficients may be defined, the analysis and numerical

methods developed in this article could be applied to

derive their asymptotic behavior.
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APPENDIX

Derivation of the Asymptotic Coefficient

In section 2, the asymptotic autocorrelation coeffi-

cient was shown to be

r̂
‘

5
rs2

m
, (A1)

where the denominator m is given by

m 5
4

s4(1 2 r2)

ð‘

0
r2K0

�
2r

s2(1 2 r2)

�
I0

�
2rr

s2(1 2 r2)

�
dr.

(A2)

The following identity results from the integral 6.576–5

of Gradshteyn and Ryzhik (2007):

ð‘

0
r2K0(ar)I0(br) dr 5

2G

�
3

2

�2

a3G(1)
F

 
3

2
,

3

2
; 1;

b2

a2

!
, (A3)

where G(z) 5
Ð ‘

0 tz21e2t dt is the gamma function and F is

the hypergeometric function (Ahlfors 1966, chapter 8).

Equation (A3) is valid when a . b. The gamma function

satisfies G(1) 5 1 and G(3/2) 5
ffiffiffiffiffiffiffiffi
p/2
p

, resulting in

ð‘

0
r2K0(ar)I0(br) dr 5

p

2a3
F

 
3

2
,

3

2
; 1;

b2

a2

!
. (A4)

To apply (A4) to (A2), let

a 5
2

s2(1 2 r2)
, (A5)

b 5
2r

s2(1 2 r2)
. (A6)

Therefore, b/a 5 r implies that a . b is satisfied when

r , 1. Equation (A4) becomes

ð‘

0
r2K0(ar)I0(br) dr 5

ps6(1 2 r2)3

16
F

�
3

2
,

3

2
; 1; r2

�
.

(A7)

Substitution of (A7) in (A2) results in

m 5
ps2(1 2 r2)2

4
F

�
3

2
,

3

2
; 1; r2

�
. (A8)

The integral 9.112 of Gradshteyn and Ryzhik (2007) may

be used to evaluate the hypergeometric function,

F

�
3

2
,

3

2
; 1; r2

�
5

1

2p

ð2p

0

dx

(11r2 2 2r cosx)3/2
. (A9)

The following identity appears as integral 2.575–4 in

Gradshteyn and Ryzhik (2007):

972 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 28



ð
dx

(c 2 d cosx)3/2
5

2

(c 2 d)
ffiffiffiffiffiffiffiffiffiffiffi
c 1 d
p «(d, r), (A10)

where

«(u, k) 5

ðu

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 k2 sin2x

p
dx (A11)

is the elliptic integral of the second kind, and

d 5 sin21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c 1 d)(1 2 cosx)

2(c 2 d cosx)

s
, (A12)

r 5

ffiffiffiffiffiffiffiffiffiffiffiffi
2d

c 1 d

r
. (A13)

Equation (A10) is valid for c . d . 0 and 0 # x # p. To

apply (A10) to (A9), let

c 5 11 r2, (A14)

d 5 2r. (A15)

Therefore, c . d . 0 is satisfied when r , 1. The pa-

rameter r is given by

r 5
2
ffiffiffi
r
p

1 1r
. (A16)

Symmetry of the integrand in (A9) implies that

F

�
3

2
,

3

2
; 1; r2

�
5

1

p

ðp

0

dx

(1 1 r2 2 2r cosx)3/2
. (A17)

Because integration occurs over the interval 0 # x # p,

(A10) may be used to obtain

F

�
3

2
,

3

2
; 1; r2

�
5

2

p(1 2 r)2(1 1 r)
« d,

2
ffiffiffi
r
p

1 1 r

� ������
p

0

.

(A18)

Noting that d(0) 5 0, d(p) 5 p/2, and «(0, k) 5 0, (A18)

reduces to

F

�
3

2
,

3

2
; 1; r2

�
5

2

p(1 2 r)2(1 1 r)
E

2
ffiffiffi
r
p

1 1 r

� �
, (A19)

where E(k) 5 «(p/2, k) is the complete elliptic integral

of the second kind. Combining (A8) and (A19) results in

m 5
s2(11 r)

2
E

2
ffiffiffi
r
p

11 r

� �
. (A20)

Substitution of (A20) in (A1) produces the final result,

r̂
‘

5
2r

(11 r)E
2
ffiffiffi
r
p

1 1 r

� � . (A21)
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