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An expression for the viscous attenuation coefficient in a suspension of solid particles is 
derived using the viscosity-modified phase shifts for a solid sphere presented in a previous 
article [Hay and Mercer, J. Acoust. Soc. Am. 78, 1761-1771 (1985) ]. This expression reduces 
in the appropriate limits to the well-known result for viscous attenuation by small rigid mobile 
particles. 

PACS numbers: 43.30.Ft, 43.20. Fn 

In an earlier article, 1 we presented explicit expressions 
for the phase shifts of the partial waves scattered by a solid 
elastic sphere, including the effects of the viscosity of the 
ambient fluid, thus extending Faran's 2 inviscid result. We 
also gave expressions for these phase shifts for the special 
case of a rigid mobile scatterer. These expressions are valid 
for intermediate to short wavelengths, not for the very long- 
wavelength region where the scattering problem is so much 
simpler. 

It is possible, nevertheless, to show that the viscous ab- 
sorption coefficient derived using the viscosity-modified 
phase shifts for the rigid mobile case reduces in the appropri- 
ate limits to that obtained by Urick 3 and Lamb. 4 The pur- 
pose of this letter is to do so. 

When a plane wave is incident upon a spherical target, 
the scattered wave can be written in terms of a phase shift r/•; 
that is? 

oo . 

•b = -Po • (2n + 1)i sin r/• e-'"nh• (kcr)P• (cos 0), 
n•---O 

(1) 

where r/• is related to the phase shift in the farfield of the nth 
partial wave of the total field (incident plus scattered), rela- 
tive to the nth partial wave of the incident wave field. Here, 
Po is the pressure amplitude of the incident plane wave, •b the 
complex scattered pressure, r the radial distance from the 
center of the scatterer, h• the nth spherical Hankel function 
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of the first kind, kc the acoustic wavenumber in the fluid, P• 
the nth Legendre polynomial, and 0 the scattering angle. 
The harmonic dependence on time, exp( -- icat) with angu- 
lar frequency ca, has been omitted for convenience. 

The viscosity-modified phase shifts take the form 1 

( tan a n ( X ) + tan q•n ( X',S';S ) ) tan r/n = tan 6n (X) ' ß tan • (x) + tan q• n (X',S';S) 
(2) 

Here, x, x', and s' are, respectively, kca, k •a, and k •a; kc 
being the compression wavenumber in the fluid; k • and k • 
the compression and shear wavenumbers in the solid; and a 
the radius of the sphere. The argument s is ksa, ks being the 
complex wavenumber of the so-called viscous wave, 

k • = icapo//ao, (3) s 

where Po and/to are, respectively, the density and molecular 
shear viscosity of the fluid. In the inviscid case, the phase 
shifts have the same form as (2), but tan •ffn (X',S';S) is re- 
placed by tan (•)n (X',S'), expressions for which are given 
elsewhere •'• (and in Ref. 6, where they are denoted Fn ). The 
tangent functions in (2) are given by 

tan 6 n (X) •--- --in (X)/tln (X), (4a) 

tan a n (X) = -- xj• (x)/jn (X), (4b) 

tan •n (X) = -- XI'l• (x)/rl n (X), (4C) 

wherej, and nn are the nth-order spherical Bessel and Neu- 
mann functions and the primes denote differentiation. 

In the rigid mobile limit (s',x' =•0), the tan q•n reduce 
to • 

tan •IJ n --- (//2 q_ n)/( 1 -at- is), (5a) 
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for n-• 1, and to 

tan kI/1 = (2or-- 3 + is)l(cr- 2 + iscr), (5b) 

for n = 1, where cr = p6 ?Po, P6 being the density of the solid 
scatterer. Note that although the above expression for 
tan q•l is much simpler than that given in Ref. 1, the two are 
in fact identical. Proving the identity is straightforward, but 
involves some algebra. The simplification arises because the 
denominator of the equivalent expression in Ref. 1 can be 
shown to be a common factor of the numerator, thus leading 
to (5b). 

The viscous absorption coefficient aoin a suspension of 
particles of volume concentration e can be written in terms 
of the viscosity-modified phase shifts by using 1 

3e 

ao= --••o(2n+ 1)[IA, 12+Re(A,)] (6) 2k c2a 3 = ' 
where A• is the amplitude of the nth partial scattered wave 
and is given in terms of the phase shifts by 

• i•ln 
An = -- i sin •/n e . (7) 

Now, Urick's result is 

ao = (ekc/2)(cr-- 1)2(s./[s2. + (or + •.)2]) 
(x,• 1,/•a), (8) 

where 

s. = 9/4l•a ( 1 + 1/l•a) (9a) 
and 

•-= 1/2(1 + 9/2/5'a); (9b) 

•a=a(COpo/21ao) 1/2, and is therefore equal to Isl/x/•. 
Urick's result is valid in the long-wavelength limit, x,< 1, and 
for x,•/•a. Our expression for the viscosity-modified phase 
shifts, on the other hand, is valid for (Isl = x/•/•a)>> 1. We 
therefore need an approximate form of Urick's result, valid 
for large/•a. Expanding (8) in powers of 1/l•a and dropping 
terms of order 1//• 2a2 or less relative to terms of order unity, 
we find 

9ekc(cr-1 )2[ 1 (2cr_•) l 2/5'a 2or 4- 1 '•\2cr 4. 
(x,• 1 ,(/5'a). 

(10) 

The requirement in (8) and (10) that x be very much 
less than/3a places an upper limit on the frequency. Most 
fluids satisfy this criterion over a considerable frequency 
range. In water, for example, the frequency must be much 
less than 10 •2 Hz. The limit/3a >) 1 in (10) corresponds 
physically to requiring that the viscous boundary layer 
thickness be much less than the scatterer radius, the param- 
eter/3 being simply the reciprocal of the viscous boundary 
layer thickness. • Since the boundary layer thickness 1//3 is 
inversely proportional to the square root of the frequency, 
this condition places a lower limit on the frequency for a 
given particle size. The expression (10) is therefore valid for 
what we call here the "high-frequency" end of the long- 
wavelength region for particles of a given size. 

Before deriving an expression for the viscous attenu- 
ation coefficient from the phase shifts, it is convenient first to 
write 

tan •/n=Xn4. iYn (11) 

It can then be shown that 

ao = -- (9e/2kc2a3)(Y,[(1 - Y•)2 +X2•]). (12) 
In the long-wavelength limit (x,< 1) we need only be 

concerned with the n = 0 and n = 1 terms in the partial 
wave expansion. Furtherore, the n = 1 term is the only one 
of these two that contributes to viscous absorption [see Eqs. 
(5) ]. Substituting (5b) in (2) and expanding the result in 
powers of 1/•a as before, together with tan 61•x3/3, 
tan a l • - 1, and tan •l • 2, yields tan •l in the long-wave- 
length limit: 

__ X3( •--1 )[ 1 __•( •--4 • tan •1 • 3 •2a + 1 •a •2a + 1 / 

+ •a k2a + •k2a + 
(x• •Oa). (•3) 

It can be seen that X• and Y• are both of order x"and, there- 
fore, that the denominator in (12) may be set to unity, giving 
finally 

a,• 1 + (x•l •a). 
2•a 2a+ 1 •k2a+ 1 

(14) 

Comparing this with (10), it is seen that the two results are 
identical to lowest order in 1/fla. The coe•cients of the 
second-order terms, however, have different numerators. 
Such differences are to be expected since the higher-order 
te•s will come into play as •a approaches unity, where our 
result becomes less accurate. 

Summarizing, we have shown that the viscosity-modi- 
fied phase shifts derived in Ref. 1 yield the same absorption 
coe•cient for rigid mobile particles suspended in a fluid as 
that obtained by Ufick, when the latter result is specialized 
to the high-frequency end of the long-wavelength region: 
that is, where kca • 1 but the frequency is high enough that 
the viscous boundary layer thickness is less than the scat- 
terer radius. We conclude that for rigid mobile particles the 
phase shifts (5) can be used to extend Ufick's result beyond 
the long wavelength limit. For elastic particles, the phase 
shifts in Ref. 1 must be used. 

•A. E. Hay and D. G. Mercer, "On the Theory of Sound Scattering and 
Viscous Absorption in Aqueous Suspensions at Medium and Short Wave- 
lengths," J. Acoust. Soc. Am. 78, 1761-1771 (1985). 

2j. j. Faran, Jr., "Sound Scattering by Solid Cylinders and Spheres," J. 
Acoust. Soc. Am. 23, 405-418 ( 1951 ). 

3R. J. Urick, "The Absorption of Sound in Suspensions of Irregular Parti- 
cles," J. Acoust. Soc. Am. 20, 283-289 (1948). 

4H. Lamb, Hydrodynamics (Dover, New York, 1945), 6th ed., pp. 657- 
661. 

5p. M. Morse and H. Feshbach, Methods of Theoretical Physcis (McGraw- 
Hill, New York, 1953), pp. 1066-1068. 

6R. Hickling, "Analysis of Echoes from a Solid Elastic Sphere in Water," J. 
Acoust. Soc. Am. 34, 1582-1592 (1962). 

2216 d. Acoust. Soc. Am., Vol. 85, No. 5, May 1989 Letters to the Editor 2216 

Downloaded 12 Oct 2012 to 129.173.23.114. Redistribution subject to ASA license or copyright; see http://asadl.org/terms


