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The available data for scattered acoustic intensity and attenuation in dilute aqueous 
suspensions of sand are compared with theory. In theoretical calculations, the scatterer is 
assumed to be spherical and elastic, or rigid and movable, or rigid and immovable. The rigid 
movable model provides the best fit to the data. The failure of the elastic model in comparison 
to the rigid sphere models indicates that resonance excitation does not occur in natural sand 
grains, probably because of irregularities in shape. The fact that better agreement with 
experiment is obtained with the rigid movable model than with the rigid immovable model 
indicates that the inertia of the particles is important. Additional approximate expressions for 
the form factor and attenuation coefficient have been constructed based on a modified form of 

the so-called high-pass model introduced by Johnson [J. Acoust. Soc. Am. 61, 275-277 
(1977) ]. The modified high-pass model provides a fit to the data that is as good as, or better 
than, the rigid movable case. 

PACS numbers: 43.30.Ft, 43.30.Gv 

INTRODUCTION 

Interest in the problem of sound propagation in particu- 
late suspensions has developed in part because of the poten- 
tial of acoustic methods for suspended sediment measure- 
ment in aqueous environments. The greatest advantage of 
this approach over others is that, in principle, quantitative 
results can be obtained remotely and therefore with minimal 
disturbance to the flow field. 

The use of acoustics to obtain estimates of suspended 
sediment concentration in the ocean appears to have been 
first suggested by Dietz • in 1948. Little was done for many 
years, but progress has been rapid in the past decade. 2-7 Al- 
though these investigations have demonstrated the potential 
of acoustic remote sensing techniques for sediment transport 
studies, a remaining difficulty is the choice of the most ap- 
propriate acoustic model for the suspended particles. Such a 
model is needed to properly interpret the relationship be- 
tween the measured acoustic signal and particle concentra- 
tion and size. 

The purpose of this article is to explore the usefulness of 
several theoretical models in which the scatterer, a sand 

grain, is approximated by a homogeneous solid sphere. The 
restriction to sand-sized material (63-pm to 2-mm diam) is 
important. The physical properties of naturally occurring 
particles, such as shape, density, and composition, vary sig- 
nificantly with size class. Therefore, it is expected that the 
scattering model most appropriate for sand could differ con- 
siderably from that for clay, for example (see Ref. 6). 

Our objective is to determine whether the homogeneous 
sphere approximation is useful for sand grains and which 
spherical model, if any, is the most suitable. One of the moti- 
vations of the study was the existence in the literature of a 
considerable body of experimental data on both attenuation 

and scattering in aqueous suspensions of sand 4'7-9 that, with 
one exception, 4'•ø had never been compared with the com- 
plete theory for scattering by a sphere. In this respect, the 
attenuation experiments by Flammer s are of particular im- 
portance since they represent the most comprehensive set of 
measurements to date. 

The theoretical estimates are made for an inviscid, non- 

heat-conducting fluid and a homogeneous, spherical, non- 
heat-conducting particle. The particle is assumed to be ei- 
ther elastic, rigid and movable, or both rigid and immovable. 
By "elastic" we mean that shear and compression waves may 
propagate within the material and that the incident wave can 
induce displacements of the particle's center of mass. In a 
rigid particle, no sound propagation occurs. An immovable 
particle is infinitely dense. Comparisons are also made with a 
modified form of the so-called high-pass model introduced 
by Johnson. • • 

In addition to Flammer, s the data sources include Jan- 
sen, 9 Young et al., 4 and Schaafsma and der Kinderen. 7 
Flammer s made direct measurements of the additional at- 

tenuation caused by suspended sediment at 2.5, 5, 7.5, 10, 
and 15 MHz at a concentration of 2.65 kg/m 3. The samples 
were sieved into 17 size fractions in the 22- to 500-pm radius 
range. Both Jansen 9 and Schaafsma and der Kinderen 7 mea- 
sured the scattered intensity as a function of sand concentra- 
tion and size for a scattering angle of 120* in bistatic systems. 
The attenuation coefficient was obtained from the depend- 
ence of the scattered signal on concentration. Jansen's 9 mea- 
surements were made at 8 MHz in the concentration range 
0.1-30 kg/m 3 and for four sieve fractions in the range of 50- 
280 pm. Schaafsma and der Kinderen 7 used 4.5-MHz sys- 
tems and natural sand size distributions in the 50- to 100-pm 
range. The measurements were made at concentrations less 
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than 5 kg/m 3. Young et al. 4 measured the backscatter inten- 
sity at 3 MHz for three size fractions in the 50- to 250-/tm 
range. The concentrations were less than 0.1 kg/m 3. 

In Sec. I, we begin with a brief summary of the theory, 
including an extension of Johnson's high-pass model for 
scattered intensity to include the dependence on scattering 
angle. In Sec. II, we develop a similar model for the attenu- 
ation coefficient. This is followed in Sec. III by comparisons 
between theory and experiment. 

I. THEORY 

A. The scattered pressure 

Assume a plane wave incident on a homogeneous 
spherical particle surrounded by a uniform inviscid fluid. 
Ignoring attenuation for the moment, the scattered pressure 
at any field point far from the particle is given by 

Ps =Pi{[afo• (O,a)/2r]}exp[i(kc r-- cot) ], (1) 
wherepi is the pressure amplitude of the incident wave, a is 
the particle radius, f• (O,a) is the farfield form factor, 0 is 
the scattering angle, r is the radial distance from the particle, 
kc is the acoustic wavenumber in the fluid, and co is the angu- 
lar frequency. 

Consider now the wave scattered from an ensemble of 

particles of nonuniform size in the bistatic case. The bistatic 
geometry is considered here because two of the data sets to be 
used were acquired with bistatic systems. The equivalent re- 
sults for monostatic systems are obtained simply as a special 
case. The geometry is shown in Fig. 1. The transmitting and 
receiving transducers (T and R in Fig. 1 ) are assumed to be 
circular and of equal diameter. The distance from the trans- 
mitter to an arbitrary particle is the incident path length and 
is denoted by ri. The scattered path length is rs, ro is the 
distance from either transducer to the center of the detected 

volume, and/30 is the half-width of the mainlobe of the direc- 
, tivity pattern (i.e., 2/30 is the angular separation of the - 3- 

dB points). We assume that the beamwidth is narrow. For 
the experiments discussed here, for example,/30 is about 1 ø. 

The pressure of the wave scattered from the particle is 
given by 

FIG. 1. The geometry for the bistatic case. T is the transmitter and R is the 
receiver. The remaining symbols are defined in the text. 

Ps = (por./2rirs )D, Dsafoo (O,a) 

Xexp[ --a(ri + rs) ]exp{i[kc(ri + rs) --cot ]}, 
(2) 

where r. is the distance along the acoustic axis of the trans- 
mitter to the point at which the sound pressure level iSpo; Di 
and Ds are the directivities of the transmitter and receiver, 
respectively; and a is the attenuation coefficient, which is 
assumed to be uniform along the incident and scattered 
paths. 

For a cloud of particles with an arbitrary distribution of 
sizes, the ensemble mean-square pressure in the absence of 
multiple scattering is given by 

p•2= f f••N(foø•Psp•*n(a)da)dr, (3) 
where n(a) is the size spectral density, N is the number of 
particles per unit volume, the asterisk denotes the complex 
conjugate, and r is the detected volume. Multiple scattering 
effects are ignored here because the data used were all ac- 
quired at concentrations less than 10 kg m-3. As discussed 
in the Appendix, these concentrations are sufficiently dilute 
such that multiple scattering should not be important (see, 
also, Refs. 12 and 13). Substituting Eq. (2) gives 

3Mppm. 16•p; •• exp[ -- 2a(r, + r• ) ] 

)] X a2lf• (O,a)12n(a)da a3n(a)da dr, 

(4) 

where M is the mass concentration of suspended matter and 
is given by 

M= Np; •w a3n(a)da, (5) 
with p6 being the density of each particle. 

The assumption of narrow beamwidth permits the fol- 
lowing simplifications: n (a) does not vary within the detect- 
ed volume, I f• (0,a) 12 = I f• (0o, a) 12 (see Fig. 1 for the de- 
finition of 0o), and gs,gi•g o. After making these 
approximations and separating the attenuation coefficient 
into two terms, one due to the ambient fluid (ao) and one 
due to scattering (as), Eq. (4) can be written in the formS2 

p• = S2Hg exp( -- •ro), (6) 

where S is given by 

S 2 = (p•r•./4rg)G• exp( - •oro). (7) 
Both Go and S are constants that depend on the geometry of 
the system. 

In Eq. (6), Ho depends upon the magnitude of the form 
factor, as well as upon the size distribution and the concen- 
tration of the suspended particles, and has the form 

H 02 = 3M/4rrp6 

© © ) x If• (0o,a)12a2n(a) da a3n(a)da . (8) 

For simplicity, fo• (O,a) will be written as fo• (0) in the fol- 
lowing discussion. 
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Equations (6) and ( 8 ) are central to the rest of the dis- 
cussion; for monostatic systems, these equations remain un- 
changed. Only the numerical value of Go and the expression 
for the detected volume r in Eq. (7) are different. 

B. Form factor, total scattering cross section, and 
attenuation coefficient 

Following Faran, TM the form factor can be written in the 
form 

foo (0) = 2 • (2n + 1 ) sin •7, 
Xn=O 

X exp( -- i7qn )Pn (COS 0), (9) 

where x = kca, rln is the phase shift of the nth partial scat- 
tered wave, and Pn is the Legendre polynomial of order n. 

The total scattering cross section is given by the usual 
result 15,16 

2•a 
E s -- • Im[ foo (0) ], (10) 

k½ 

which can be obtained directly from Eqs. ( 1 ) and (9). For 
uniformly sized particles, the attenuation coefficient due to 
scattering is given by as = N Es/2, or 

aas/e = 1 {Im[ foo (0) l/x}, ( 11 ) 
using Eq. (5), where e = M/p; is the volume concentration 
of suspended particles. For nonuniform particles, we have 

a'-• = asn(a)da 

;0 © /4;0 © = 3e Im[ foo (0) ]an(a)da kc a3n(a)da. 
(12) 

The elastic properties of the scatterer enter the problem 
through the phase shifts r/•, expressions for which are given 
elsewhere. 14.16 The elastic properties of the scatterer depend 
on only three parameters involving scatterer properties' the 
ratio of the grain density to the fluid density, P;/Po; 
x' k' ß and s' k •a. Here, k • and k • are, respectively, 
the wavenumbers of the compression and shear waves in the 
particle. For the rigid movable case, x',s'-• 0 since the phase 
speeds of compression and shear waves become infinite in a 
completely rigid material. For the rigid immovable case, in 
addition to the conditions above, p;/Po-• o6. 

C. High-pass model 

Johnson ll introduced the high-pass model for back- 
scattered intensity. The essential idea is that a simple polyno- 
mial can be used to represent the overall x dependence of 
I I approximately by requiring that it fit this behavior ex- 
actly in the Rayleigh and geometric scattering regions, that 
is, where I I is, respectively, proportional to x 2 and equal 
to 1. We have extended this idea to include the angular de- 
pendence. The expression takes the forml2 

I f• ( 0 ) I = Kf x2/( 1 + Kfx 2 ), ( 13 ) 
where K• = (•)l Y• + Ya cos 0 1 and y• and Ya are the usual 
compressibility and density contrasts in the Rayleigh range 
(e.g., Ref. 5). It can be seen that, for small x, Eq. (13) exhib- 
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its the required Rayleigh dependence on x and 0. For large x, 
I goes to unity as required. Equation (13) is also 
isotropic at large x. As will be seen, this may be a useful 
property. 

We have also constructed a high-pass model for the at- 
tenuation coefficient which can be written as 

aas/e = Kax4/[ 1 + (•)Kax 4 .qt_ •x2], (14) 
where K• = (• + •/3 )/6 and • is an adjustable constant 
> 1. In this article, the value of • is chosen as 1. Equation 
(14) also displays the appropriate dependence on x and K• 
in the Rayleigh and geometric regions. This is verified most 
readily perhaps by rewriting (14) in terms of the total scat- 
tering cross section •;s, which equals 8•l'a2x4ga/3 and 2rra 2 
at small and large x, respectively. 15 The purpose of the •x 2 
term is to improve the fit to the data at intermediate values 
ofx. 

II. RESULTS 

A. Attenuation coefficient 

1. Flammer's s data 

The attenuation coefficients measured by Flammer 8 for 
a mixture of Missouri River sand and blasting sand are 
shown in Fig. 2. The data are taken from Flammer's Fig 3. 8 
Only those data points for mean diameters less than 500/•m 
are plotted since the data for larger sizes were considered to 
be less accurate. 8 The theoretical estimates assuming uni- 
form particle size for the different models discussed in Sec. I 
are also plotted in Fig. 2 as solid lines. Figure 2(a)-(d) 
shows the comparisons between theory and experiment for 
the elastic, rigid movable, rigid immovable, and high-pass 
models, respectively. The residuals, the differences between 
the measured and theoretical estimates, are plotted for each 
case. 

Consider first only those models that contain the most 
physics, that is, the elastic, rigid movable, and rigid immov- 
able models. For convenience, we shall call these the "phys- 
ical" models. The theoretical calculations were made with 

the following parameter values: for the elastic case, p; 
= 2.65 gcm -3 and compression and shear wave speeds of 
5100 and 3200 m s-l, respectively; for the rigid movable 
case, the same value ofp;, but with infinite wave speeds; and 
for the rigid immovable case, infinite density and infinite 
wave speeds. The number of terms retained in the partial 
wave expansion at each value ofx was such that the ratio of 
the last term and the sum was less than 10-5. The resolution 
of the calculations is 0.01 in x. 

To begin, consider the elastic case [Fig. 2 (a) ]. The ex- 
trema in the theoretical curve near x = 5.7, 8.2, etc., in Fig. 
2 (a) are associated with the S21, S3 l, and higher-order Ray- 
leigh wave resonances. 16 These features do not appear in 
Flammer's 8 data. 

It can also be seen that, for x •< 2, both the elastic and the 
rigid movable cases [Fig. 2(b) ] fit the data reasonably well, 
and much better than the rigid immovable case [ Fig. 2 (c) ]. 
For large values of x( > 10), both rigid models give results 
that agree rather well with the data. 

The attenuation coefficient as can also be normalized by 
1/kc e [ Eq. (12) ]. This normalizing factor has the advan- 
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FIG. 2. Comparison of measured and computed values of aas/e using Flammer's 8 data. The solid lines in (a) and (b) are the theoretical results for (a) the 
elastic case using p• = 2.65 g cm -3 and compression and shear wave speeds of 5100 and 3200 m s-•, respectively; and (b) the rigid movable case with p• 
= 2.65 gcm- 3 and infinite shear and compression wave speeds. The solid lines in (c) and (d) are the theoretical results for (c) the rigid immovable case 
(infinite p• and sound speeds in the particle) and (d) the high-pass model. 

tage that the measured values of a are not multiplied by a, 
which is not well defined for nonuniform sizes [Eq. (12) ] 
and therefore introduces another source of error into the 

comparisons. A plot Ofas/k,,e vs x for the rigid movable case 
is shown in Fig. 3. In Fig. 3, the generally good agreement 
between theory and experiment is again apparent. It is clear, 
however, that the observed attenuation coefficients are larg- 
er than those predicted in the region 2 < x < 7. This same 
effect is seen in Fig. 2; we must now conclude that it does not 
result from the normalization procedure. 

For quantitative comparison, two measures are used 
here: the correlation coefficient Ry z and the percentage dif- 
ference d, which is given by 

at= ] [.v , - z , [ (]5) 
tn i=] z i 

where Yi and zi are, respectively, the theoretical and experi- 
mental estimates for the same x and rn is the number of 

measurements. The percentage differences and correlation 
coefficients for the various cases and uniform size are given 

o I i i i 

o I FLRHHER EHHz'l c;'1 x e x 0f'=25.0 el'=7.5 
/ + xe• ,-•'=15.0 x•'=5.0 

4- / s s 

•1 *..._,•' x . • e+ e.+_ ._e___..e___ 
0 .1••,_ x. _ •. _ ...X_ •( _ w 

! 

O. O0 5:O0 10. O0 1•. O0 20. O0 
ka 

25. O0 

FIG. 3. Comparison of measured and computed values of as/k½e using 
Flammer's 8 data. The solid line is the theoretical result in the rigid movable 
case. 
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TABLE I. The percentage differences and correlation coefficients (in par- 
entheses) between computed and measured aas/e using Flammer's 8 data. 

Case Uniform Log normal 

Elastic 15.3 (0.903) 14.0 (0.943) 
Rigid movable 13.1 (0.979) 13.2 (0.979) 
Rigid immovable 20.9 (0.964) 19.7 (0.964) 
High pass 10.7 (0.980) 11.0 (0.978) 

in Table I. From Table I, we see that the physical model 
providing the worst agreement is either the elastic case (cor- 
relation coefficient 0.90), or the rigid immovable case (per- 
centage difference 21 ), depending on which of the two quan- 
titative measures is used. Both the percentage difference and 
the correlation coefficient attain their best values for the rig- 
id movable case. 

Some reduction in the percentage differences is to be 
expected if the size distributions are included in the compu- 
tations since this would effectively cause additional smooth- 
ing of the theoretical results. The size parameters given by 
Flammer 8 for each sand fraction were those for the log-nor- 
mal distribution, which has the form 

n(ln a) = ( 1/2x/• In % ) 

Xexp[-(lna-lnag)2/21n2c%], (16) 
where a s and ag are, respectively, the geometric mean radius 
and the geometric standard deviation. The effect on the theo- 
retical results for the rigid movable case is illustrated in Fig. 
4. The calculations were made with ag = 1.2, the value given 
by Flammer. 8 Only a modest amount of smoothing occurs; 
consequently, it is not surprising that only minor changes in 
the percentage differences and correlation coefficients result 
(Table I). Therefore, it appears that the absence of reso- 
nance features in the data [ Fig. 2 (a) ] is not ascribable to the 
smoothing effects of the size distribution. 

Returning to Fig. 2, it can be seen that the high-pass 
model [Eq. (14) ] provides a very reasonable fit to the data 
[Fig. 2(d)]. In fact, for Flammer's 8 data set this fit is as 
good or better than the best physical model, the rigid mova- 
ble case (Table I). This model may therefore prove to be a 
useful approximation for sound attenuation in aqueous sus- 
pensions of irregularly shaped particles such as sand grains. 

Finally, as a basis for direct visual comparison with the 
results presented below, in Fig. 5 the computed attenuation 
coefficients for each of the models assuming uniform size are 
plotted against the measurements in the form of scatter dia- 
grams. 

2. Other experiments 

Attenuation measurements in sand suspensions have 
been made more recently by Jansen 9 and Schaafsma and der 
Kinderen. 7 These results and the values of x at which they 
were made are listed inTable II (see, also, the Appendix), 
together with the computed values for the different models 
assuming uniform size. There are not a large number of data 
and most are for values of x < 2. Nevertheless, these results 

g 

25. O0 

FIG. 4. Comparison of measured and computed values of as/kce using 
Flammer's 8 data. The solid line is the theoretical result for the rigid movable 
case for log-normal size distribution with a s = 1.2. 

support the conclusions drawn above. This may be seen by 
comparing Figs. 6 and 5, or by examining the quantitative 
measures of comparison in Table III. Again, depending 
upon one's choice of the measure of agreement, either the 
elastic or the rigid immovable model provides the worst fit to 
the data and the rigid movable and high-pass models provide 
the best. 

This conclusion holds whether the effects of the finite 

width size distribution are included or not. For these data, it 
was more convenient to use Gaussian and Rayleigh distribu- 
tions to fit the size parameters given. The Gaussian distribu- 
tion simply took its usual form: 

n(a): (1/2•/•-•c)exp[ -- (a -- •)2/2o'2], (17) 
where • and a are, respectively, the mean value and the stan- 
dard deviation. The Rayleigh distribution used here is a 
modified version of the usual form and is given by 

n(a) = [•r(a - l)/2Z• ] exp [•r(a - 1)2/4• ], (18) 
where n(a)= 0 for a<l. In Eq. (18), •o determines the 
shape of the distribution. The mean size • is given by 
(•o + 1). 

The percentage differences and correlation coefficients 
for all cases are presented in Table III. The values of a and •o 
used in the computations are given in Table IV. Again, as 
was the case with Flammer's data (Table I), the effects of 
including the size distributions in the calculations are small. 

B. Scattered intensity 

No absolute measurements of scattered intensity are 
available. Instead, researchers have presented results in 
terms of the mean-square voltage (•2) output from the re- 
ceiver. In order to compare measured and theoretical scat- 
tered intensities, the -- 2 V• values were normalized by the aver- 
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FIG. 5. Comparison between calculated and measured values of fia,/e for. Flammer's 8 data, where the calculations are for uniform particle size in (a) the 
elastic case, (b) the rigid movable case, (c) the rigid immovable case, and (d) the high-pass model. 

TABLE II. Calculated and measured values of fia,/e assuming uniform particle size. "Movable" and "immovable" refer to the rigid movable and rigid 
immovable cases, respectively. 

Sand 

Source (/•m) kcfi Measured Elastic Movable Immovable High pass 

Jansen 9'24 54 1.84 0.256,0.178 0.262 0.263 , 0.272 0.289 
115 3.96 0.566,0.531 0.473 0.455 0.444 0.583 
193 6.60 0.706,0.522 0.448 0.539 0.536 0.683 
275 9.43 ..-,0.655 0.731 0.582 0.582 0.716 

Schaafsma and 50 0.96 0.067 0.066 0.071 0.110 0.072 
der Kinderen 7 80 1.54 0.168 0.182 0.191 0.233 0.214 

(1D) 100 1.93 0.235 0.288 0.286 0.284 0.300 

Schaafsma and 50 . 0.96 0.075 0.066 0.071 0.110 0.072 
der Kinderen 7 75 1.45 0.176 0.162 0.171 0.219 0.192 

(2D) 100 1.93 0.242 0.288 0.286 0.284 0.310 
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FIG. 6. Comparison between calculated and measured values of•as/E for Jansen's 9'24 and Schaafsma and der Kinderen's 7 data, where the calculations are 
for uniform particle size in (a) the elastic case, (b) the rigid movable case, (c) the rigid immovable case, and (d) the high-pass model. 

age over all size fractions in each data set. Similarly, using 
Eq. (8), the theoretical estimates of H o • were computed for 
each size fraction and normalized by the average of the val- 
ues for all size fractions for each data set. 

The comparisons between the normalized values of H o: 
and -- 2 V s for uniform particle size are shown in Fig. 7. Note 
that the experimental results obtained by Young et al. 4 (see, 

TABLE III. Percentage differences and correlation coefficients (in paren- 
9 24 theses) as in Table I using Jansen's ' and Schaafsma and der Kinderen's 7 

data. 

Case Uniform Gaussian Rayleigh 

Elastic 16.2 (0.920) 14.9 (0.925) 15.0 (0.924) 
Rigid movable 14.7 (0.966) 12.7 (0.972) 13.3 (0.971) 
Rigid immovable 26.6 (0.969) 21.3 (0.970) 24.1 (0.956) 
High pass 18.1 (0.978) 15.3 (0.979) 15.6 (0.979) 

TABLE IV. The size distribution parameters. 

Size range Gaussian Rayleigh 

Source (/•m) a (/•m) • (•m) •o (/•m) • (/•m) 

Jansen 9'24 45-63 9 54 18 
105-125 10 115 20 

175-210 18 192 35 

250-300 25 275 53 

Schaafsma and 38-60 11 49 23 
der Kinderen ? 55-108 27 79 51 

(1D) 65-125 30 99 65 

Schaafsma and 38-60 11 49 23 
der Kinderen ? 55-108 27 79 51 

(1D) 65-125 30 99 65 

Schaafsma and 34-70 19 49 34 
der Kinderen ? 53-120 34 74 55 

(2D) 75-160 43 99 66 

Clarke et al. ]ø 37-55 9 47 19 
Minor axis 70-90 11 81 21 

153-227 38 191 75 

55 

116 

195 

277 

51 

82 

103 

51 

82 

103 

51 

78 

103 

47 

83 

270 
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FIG. 7. Normalized values ofH g and V• for uniform size in (a) the elastic case, (b) the rigid movable case, (c) the rigid immovable case, and (d) the high- 
pass model. 

also, Ref. 10) using a monostatic system have been included. 
It is immediately apparent, comparing Fig. 7 with Figs. 5 
and 6, that there is much more scatter in the comparisons for 
the available data on scattered intensity than for the data on 
attenuation. The percentage differences between the nor- 
malized estimates and theoretical values for all cases and 

TABLE V. The percentage differences and correlation coefficients (in par- 
entheses) between normalized theoretical and measured scattered intensi- 
ties. 

Case Uniform Gaussian Rayleigh 

Elastic 35.9 (0.115) 27.6 (0.415) 26.6 (0.462) 
Rigid movable 33.2 (0.117) 25.3 (0.319) 25.4 (0.392) 
Rigid immovable 46.0 (0.091) 49.2 (0.117) 51.1 (0.101) 
High pass 26.3 (0.481) 22.5 (0.473) 24.4 (0.459) 

three size distributions are presented in Table V. The percen- 
tage differences are large (25%-50%). These differences 
are too large to permit useful discrimination among the 
physical models, although the rigid movable model still pro- 
vides the best fit. 

Some reduction in percentage difference is achieved if 
we follow the suggestion of Clarke et al. •ø and use the total 
scattering cross section to compute the scattered intensity at 
any given angle. The idea is that the random orientations of 
the irregularly shaped sand grains will cause the scattering to 
be more isotropic on average. •7 In this case, I foo (0)12 in Eq. 
( 8 ) should be replaced by ( I foo 12), where the angular brack- 
ets denote the average over all scattering angles from 0-•r. 
Furthermore, the total scattering cross section in the iso- 
tropic limit becomes 

•s = *ra2(If• (19) 
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TABLE VI. The percentage differences and correlation coefficients (in par- 
entheses) between normalized values of (Ho 2 ) and normalized values of 
I/• 2 percentage to computed scattered intensity. 

Case Uniform Gaussian Rayleigh 

Elastic 29.9 (0.448) 27.0 (0.531) 28.0 (0.515) 
Rigid movable 26.4 (0.554) 23.4 (0.605) 24.7 (0.584) 
Rigid immovable 19.2 (0.659) 17.6 (0.668) 18.7 (0.662) 
High pass 25.5 (0.594) 23.7 (0.620) 24.2 (0.613) 

so that the attenuation coefficient •s in Eq. (12) can be writ- 
ten as 

36 a2 2 - <Ifil )n(a)da a3n(a)da , 
(20) 

using Eqs. (10) and ( 19 ). Finally, comparing Eqs. (8) and 
(20), we obtain 

) = 2s/r, (21) 

where, (H • } denotes the value ofH • after averaging over all 
possible orientations. 

The normalized values of {H o 2 } were calculated using 
Eq. (21 ) and compared to the P•2 data. The percentage dif- 
ferences and correlation coefficients for all cases are present- 
ed in Table VI. It can be seen that there is considerable im- 

provement in the percentage differences and the correlation 
coefficients, specifically in the rigid immovable case, which 
now provides the best fit. These r&sults suggest that this ap- 
proach may be useful. The degree of scatter, however, re- 
mains large; in light of the attenuation results, the fact that 
the rigid immovable case emerges with the best fit seems 
suspect. 

III. SUMMARY AND CONCLUSIONS 

We have compared theoretical estimates of scattered in- 
tensity and the attenuation coefficient with data published 
previously for dilute aqueous suspensions of sand. The theo- 
retical calculations are made by approximating the sand 
grain as a homogeneous spherical particle. Three model 
spheres are used' elastic, rigid movable, and rigid immov- 
able. 

This appears to be the first comparison of theoretical 
and experimental attenuation coefficients in suspensions of 
mineral grains at wavelengths comparable to or less than the 
scatterer circumference. As far as the existing data are con- 
cerned, these attenuation comparisons are crucial. The rigid 
movable case provides the best fit to the data. This, together 
with the fact that the rigid immovable case fits the data less 
well, indicates that the inertia of the particles is important, 
particularly for values of x near unity. 

The fact that the elastic case does not fit the data as well 

as either rigid model indicates that resonance excitation does 
not occur, supporting a similar conclusion made by Clarke et 
al. •ø on the basis of comparisons between backscatter data 
and a fluid sphere model. This is probably because natural 
sand grains are irregularly shaped and inhomogeneous in 
composition. It is well known that resonance excitation by 
.scattering can be described in terms of surface waves and 

that for a spherical scatterer the circuit times of the surface 
waves at resonance must be an integral dividend of the inci- 
dent wave period. •8 It appears that in natural sand grains, 
the irregularities in shape are such that the surface waves 
have no well-defined circuit time; therefore, resonance does 
not occur. 

The rigid movable model underpredicts the attenuation 
for intermediate values of x, however. Again, this probably 
arises from irregularities in grain shape. Additional scatter- 
ing from surface roughness features is to be expected for 
values of x > 2. Similar effects have been observed in optical 
scattering experiments with irregular particles. lø At large 
values of x, Flammer's data 8 asymptotically tend toward the 
geometric cross section of a perfect sphere. This may reflect 
either a lower limit to the surface roughness scale or prob- 
lems with the measurements at large sizes. 8 

The comparisons using scattered intensities, however, 
exhibit a very high degree of scatter. Improved agreement is 
obtained by assuming that on average the scattering is iso- 
tropic. In addition to the possible inadequacies of the mod- 
els, however, there are a number of other potential contribut- 
ing factors. One factor is the normalization procedure, 
which would not contribute if absolute measurements had 

been made. A second factor is that it is difficult to make 

unambiguous estimates of the relative amplitudes of the 
scattered signals at different radii from some of the experi- 
ments. Third, it is possible that in Jansen's o experiments the 
particles adopted a preferred orientation because they were 
allowed to free fall through the detected volume. Regardless, 
a more comprehensive set of measurements is needed. 

Approximate expressions for the form factor and at- 
tenuation coefficient have been constructed based on the so- 

called high-pass model introduced by Johnson. • Our modi- 
fied high-pass model provides a fit to the attenuation data 
that is as good as or better than the rigid movable case. This 
model is therefore potentially valuable, providing a simple 
analytic expression for evaluation of the size and concentra- 
tion dependence of the scattered signal. 

Finally, comparisons have been made assuming that 
multiple scattering effects are small. The assumption is justi- 
fied by examining the available data for nonlinearity in the 
attenuation as a function of concentration. Such nonlinear- 

ity appears only at concentrations exceeding 10 kg m- 3 and 
the magnitude of the effect is shown to be roughly consistent 
with expectation. 
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APPENDIX: MULTIPLE SCATTERING LIMIT 

In this Appendix, we estimate the concentration at 
which multiple scattering becomes important. For simpli- 
city, we initially assume isotropic scattering and particles of 
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FIG. A1. The half-period zone for the first-order multiple scattered waves. 

uniform size. Furthermore, because we are interested in ap- 
proximate estimates only, the Waterman and Truell 2ø for- 
mulation is used. 

We choose two scatterers, thefih and the k th, and sup- 
pose the scattered pressure from the fih particle is rescat- 
tered by the k th scatterer. Referring to Fig. A 1, the distance 
from the fih particle to the transmitter is r e, and to the re- 
ceiver it is rsi. The distance from the k th to thejth particle is 
6•k, and to the receiver it is pk. 

Following Waterman and Truell, 2ø the Fresnel half-pe- 
riod zones are ellipsoids and the interior of the nth half- 
period zone is defined by t'sj -Jr- ( n -- 1 ) (/l/2) <6jk 'Jr- Pk 
d- n (A/2), where n is an integer and A is the acoustic wave- 

length. All waves restattered by particles located within a 
given Fresnel zone have amplitudes of the same sign when 
they arrive at the receiver. On average, the contributions 
from adjacent zones will be opposite in sign; because of the 
attenuation and radial spreading of the scattered wave from 
thejth particle, we can say the total contribution from sever- 
al zones could not be larger than the contribution from the 
first zone. As a result we need only consider multiple scatter- 
ing from the first zone, the boundary of which is defined by 
6•k d- Pk = rs• d- A/2 (see Fig. A 1 ). The scattered and re- 
scattered pressures are given by 

Ps• -- pi (af oo /2% )exp( ikc% ), (A1) 

P•j =P,(a2f• /4p•6j• )exp[ikc (6• +p• ) ], (A2) 

where Psi is the pressure at the receiver of the wave scattered 
from thefih particle and p•j is the received pressure of this 
same wave after being rescattered by the k th particle. 

Let Pv be the total (first-order) multiple scattered pres- 
sure from the first Fresnel half-period zone, so that we have 

Plj = N f fzone , f PiS dr. (A3) 
Substituting Eq. (A2) into (A3), we have 

Pv = Ipia2f 2N 
1 

•f fzone, f ('•-•-p exp [ikc (/5 d-p)])d•', (A4) 

where the subscripts on 6 and p have been dropped for con- 
venience. 

Following Waterman and Truell, 2ø we choose the bipo- 
lar coordinates p, 6, and ß (the azimuthal angle about the 
acoustic axis) for the integration. In the first zone we have 

rsj<6 +p<rs• + A/2 (AS) 
and 

O<p<% + A/4, 0<•<2rr. (A6) 
The volume element dr is given by dr = 6p dp d6 
(see Ref. 21 ) so that after integrating Eq. (A4) we obtain 

Pv = [ rriaf oo N( rsj + A/4)/k½ ] 

XPi ( af oo /% )exp( ik½% ). (A7) 
Equation (A7) can be written as 

Pv/psj = 2rriaf oo Nrsj/k½ (A8) 

since ,t/4•rsj. For the narrow beam case we have % =ro 
and Eq. (A8) becomes 

Pv/psj. = 2rriaf oo Nro/kc, (A9) 
which is similar to the result obtained by Waterman and 
Truell 2ø [ their Eq. (A6) ]. 

If [P•/Ps I'g 1, then multiple scattering can be ignored. 
This condition holds if 

N<kc/2rralfoo [ro. (A10) 

By using Eq. (5) for uniformly sized scatterers, condition 
(A 10) becomes 

M/p; 42x2/3kc l f oo Iro. (All) 
Let us consider cases in which x,• 1, aN 50/•m, Ifil 

•x 2 [for quartzlike particles, see Eq. (13) ], and ro•0.1 m. 
We obtain 

M/p; ,•5X 10 -3. (A12) 

For quartz particles, p; • 3 X 10 3 kg/m 3, giving M,• 15 kg/ 
m 3 . 

Condition (A11) can be too restrictive, however, be- 
cause the transducer directivity has not been considered. 
From Fig. A 1 it can be shown that fire, the angle subtended 
by half the minor axis of the first zone, is given by 

COS/•m = (%/2)/(rs•/2 +g/4)•l --A/2rs• (A13) 
and, since rsj • ro, 

•m •X/,• /r o = x/C/rof . (A14) 

Considering a typical case where r o = 0.15 m, the frequency 
f = 8 MHz,/•o = 1ø, and the speed of the sound c = 1500 m 
s- •, we obtain/• m • 2ø' Therefore, 

•m •2/• o . (A15) 

From Eq. (A15) we note that the mainlobe of the re- 
ceiver beam pattern is inside the first Fresnel zone. Since the 
receiver is sensitive primarily to the waves scattered from the 
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particles that are located in the mainlobe, the total multiple 
scattered pressure calculated by Eq. (A3) is therefore larger 
than that actually sensed by the receiver. In other words, the 
actual value of maximum concentration for ignoring the 
multiple scattering could be larger than that estimated from 
Eq. (All). 

The results obtained above require that x should be 
small, so that the form factor is independent of scattering 
angle. For other values of x, the isotropic assumption does 
not hold and, for x large enough, I foo I becomes very large in 
the forward direction (see Ref. 15). This permits us to con- 
sider multiple scattering only in this direction. The rescat- 
tered pressure in Eq. (A2) now takes the form 

P•j =Pi [4a2foo (O)foo (O)/pk6k ]exp[ikc (6yk +p•)] 
(A16) 

since 6y• +p• = r,j. The total (first-order) multiple scat- 
tered pressure in the forward direction Pv is given by 

Pv = [P •a2foo (O)foo (0)/4] exp(ikcr•) 

1 (A17) 
k--! 

Let • be the average interval between any two neighboring 
particles. Clearly, • is equal to 1/N 1/3. Then, Eq. (A17) 
becomes 

Pv = [Pia2foo (O)foo (O)/4]exp(ik, rs•) 

rs•- a 1 d6 X . (A18) 
.,• 6(rs• -- •) A 

After integrating Eq. (A 18 ) and assuming % >> A, we obtain 

Pv = foo (O)a (.piafo o (O)exp(ik•r•) 2-•• • ) (2 log-•) 
(A19) 

or 

Pv/p• = N 1/3f o o (O)a log(N 1/3rsj ). (A20) 
Consider a typical case with uniform-sized scatterers of radi- 
us a = 300/•m and x = 10. It can be shown 12 that If= (0) I 
increases linearly with x for x > 1, so that l foo (0) l• 10. 
Therefore, with ro = 0.15 m, Eq. (A20) gives Mg 2.0 kg 
m -3 as the condition for negligible multiple scattering. It 
can be seen that, as the amplitude of the forward scattered 
wave increases, the maximum concentration for ignoring 
multiple scattering decreases. 

We now consider the observations. The mean-square 
output voltage from the receiver, divided by the concentra- 
tion M, is plotted against M using Jansen's o data in Fig. A2 
and Schaafsma and der Kinderen's 7 results in Fig. A3. It can 
be seen that, for the most part, the data are consistent with 
the attenuation being a linear function of concentration, as 
expected in the absence of multiple scattering [ Eqs. (6) and 
(11) ]. In Jansen's 9 data, however, there is an indication of 
nonlinear behavior at the highest concentrations [Fig. 
A2 (b) ]. The nonlinearity is such that the increased attenu- 
ation per unit increase in concentration decreases, a well- 
known effect of multiple scattering. 22'23 

The measurements exhibiting nonlinear behavior are 
for two sand sizes: 54- and 115-/•m mean radius, correspond- 
ing to values of x of 1.84 and 3.96, respectively. Using Eq. 

I I 

- o ß 50 um 
o ß 120 um 
O ß ! 90 um 
o - 280 um 

I 9 

00 4.00 8.00 
i ! 

(b) (D - o = 50 um 121 -o-- 120 um 

I I 

9. O0 1 8. O0 

M [k g/m•3] 
0.00 

12. 

24 FIG. A2. LOglo( V• 2/M) vs M for data given by Jansen. (a) Low concen- 
trations and (b) the entire range of concentration in the experiments for 
• = 50 and 120/zm. 

ß I I I 

ß 

'o: oo ,[ oo •[ oo 2[ oo •'. oo 
M (kg/m•3] 

$.00 

FIG. A3. LOglo ( }rs2/M) vs M for data given by Schaafsma and der Kin- 
deren. 7 (a) From $ 22 and (b) from $ •. 
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THE HALF-PERIOD ZONE 

T 

FIG. A4. The geometry in Jansen's 9'24 experiments. The 3-cm-wide rectan- 
gular perspex tube through which the sand grains were allowed to fall is 
shown in the center of the figure. 

(9), the form factor I I has been calculated for three scat- 
tering angles: 0 ø, 120 ø, and 180 ø. For x = 1.84, the values are 
0.77, 0.71, and 0.68, respectively. These are nearly the same 
and the isotropic scattering model is assumed in this case. 
For x = 3.96, the values are 3.62, 0.73, and 1.26, respective- 
ly. It is clear that forward scattering dominates at this value 
ofx. 

For x = 1.84, the total multiple scattered pressure can 
be estimated from Eq. (A4). Since the sand grains in Jan- 
sen's 9 experiments were confined in a 3-cm-wide rectangular 
tube, the ranges of 6 + p and ß in this case are the same as in 
Eqs. (A5) and (A6), but the range of p is limited to 
r* <p<rsj + A/4, where r* is the distance from the cylinder 
to the receiver (see Fig. A4). It can be seen that r* changes 
with/•. For simplicity, considering the narrow beam case, 
we assume r* is constant and equal to 12 cm in Jansen's 9 
experiments. The multiple scattered pressure then takes the 
form 

Pv/psj = 3kcf oo M(ro - r* )/2p6x 2. (A21 ) 
For M= 25.5 kg/m 3, p• = 2.65X 10 3 kg/m 3, and Ifil 
= 0.7, we obtain IPv/p•l •3.0. For a single particle in the 

detected volume, the total scattered pressure at the receiving 
transducer is Ps• + Po' Ignoring phase differences between 
the scattered and rescattered waves, the total scattered pres- 
sure becomes 

( 1 q- IP,j/Ps•l)•s, 
which at this concentration is about 4.0 •s, where •bs is the 
mean scattered pressure without multiple scattering. From 
Fig. A2(b), we find graphically that the actual scattered 
pressure at this concentration is 1.9 •bs. The approximate 
predicted correction is therefore within a factor of 2 of that 
observed. 

For x = 3.96, we consider forward multiple scattering 
only. In this case, the multiple scattered pressure can be esti- 

mated using Eq. (A 18), but with r* for the upper limit of 6. 
Working out the algebra, we obtain 

Pv af oo (O)N •/3 ( r* • = In ro -- roN •/3 . (A22) 
Psi 2 r* 

For M=20.5 kg/m 3, p(• = 2.65X103 kg/m 3, and 
(o)1 = 3.62, we obtain IPv/psjlO.8. Again, the scat- 

tered pressure at the receiving transducer due to a single 
particle is Psi + Pv, but in this case it is possible to include 
the effects of the phase difference between the incident scat- 
tered wave and the forward rescattered wave. The phase dif- 
ference between the forward scattered wave and the incident 

wave is •r/2 (see Ref. 12). The total scattered pressure is 
therefore given approximately by 

From Fig. A2(b), the actual scattered pressure at this 
concentration is seen to be 1.2•s. The agreement between 
the predicted and actual total scattered pressures is good. 

Now consider the apparent absence of multiple scatter- 
ing effects in Schaafsma and der Kinderen's 7 results (Fig. 
A3). Since the maximum values of x in Schaafsma and der 
Kinderen's 7 experiments are less than 2.0, the isotropic scat- 
tering assumption is made. The multiple scattered pressure 
can be estimated using Eq. (A9), which is IP¾/ps.l 
•(1.5•-4.5) for ro= 15 cm and ]Pv/ps./]•.(0.8,--.2.2) for 
r o = 7.5 cm at M = 5 kg/m 3. Again, ignoring phase differ- 
ences due to scattering, the total scattered pressure is about 
(2.5 -• 5.5) •s for r o = 15 cm and ( 1.8-• 3.2) •s for r o = 7.5 
cm. The predicted values are such that multiple scattering 
effects would be expected in the data, but they are not ob- 
served, except perhaps for a = 75 pm in Fig. A3 (a). These 
measurements differ fundamentally from Jansen's, 9 how- 
ever, in that the suspension was distributed along the entire 
acoustic path. The discrepancy may therefore be due to the 
fact that the phase differences between the scattered and re- 
scattered waves, the transducer directivity, and the scattered 
pressure from particles in the other Fresnel zones have all 
been ignored. The estimates are more sensitive to these ef- 
fects when the suspension fills the half-space viewed by the 
bistatic system and would tend to reduce the estimate of total 
scattered pressure. 

From the above discussion, it can be seen that the non- 
linear dependence of the attenuation coefficient on M at high 
concentrations could be due to multiple scattering, and the 
approximate correction for cases in which forward scatter- 
ing dominates (x>> 1 ) is in reasonable agreement with Jan- 
sen's 9 data. At smaller values of x, consistency with experi- 
ment is possible only if the scatterers are restricted to the 
transducer farfield; and even then, the predicted effects are 
too large. A more complete approach seems to be needed in 
this case. The most important conclusion as far as this article 
is concerned is that the data do not exhibit multiple scatter- 
ing effects below concentrations of 10 kg m -3. Measure- 
ments at larger concentrations were not used in the compari- 
sons presented here. 
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