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Analytical results are obtained for the amplitude of a spherical wave backscattered from a solid 
cylinder immersed in water. The effects of transducer directivity and transmitted pulse duration 
are included. Backscatter measurements for comparison with theory are made using straight 
stainless steel wires ranging from 0.13 to 0.26 mm diameter, and acoustic transceivers operating 
at 1, 2.25, and 5 MHz. The results are used to evaluate the use of thin wires as standard targets. 

PACS numbers: 43.30.Ft, 43.20.Fn, 43.30.Yj 
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INTRODUCTION 

Sound scattering by cylinders has importance in a wide 
range of underwater acoustic applications. Acoustic scat- 
tering from a solid cylinder of finite length, however, is a 
difficult problem to fully describe analytically. The bound- 
ary conditions at the scatterer have cylindrical symmetry, 
but at large distances fro-m the ---"--'- the scattered •A,• 11glU cynnucr 

spreads spherically if the cylinder is not infinitely long. The 
problem is more complicated if the incident wave is spher- 
ical rather than plane. 

Scattering of a plane wave incident on an infinite cyl- 
inder has been investigated extensively. 1-3 Studies of plane- 
wave scattering from finite-length cylinders have also been 
made. 4-8 It has been shown 5'? that the scattering charac- 
teristics of the cylinder depend on its length relative to the 
diameter of the first Fresnel zone. For the case in which the 
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length of the cylinder is much greater than the Fresnel 
zone diameter, the cylinder is in effect infinitely long. If, on 
the other hand, the length of the cylinder is much less than 
the Fresnel zone diameter, the cylinder is effectively very 
short. 

Scattering of a spherical wave incident on an infinite 
cylinder has been studied by Piquette 9 and lately by Li and 
Ueda. 1ø'11 Piquette obtained an approximate solution, valid 
at long wavelengths, by setting the radial and tangential 
components of the vector potential in the cylinder to zero. 
Li and Ueda expressed the scattered pressure as a one- 
dimensional integral of their solution for an obliquely in- 
cident plane wave. 3 The integral could not be solved ana- 
lytically, and its numerical evaluation presented a number 
of difficulties. 1ø 

DiPerna and Stanton 12 recently examined the back- 
scattering of a spherical incident wave by cylinders of vary- 
ing length. It was found that the scattering characteristics 
are dominated by Fresnel zone effects and the scattered 
pressure oscillates with the cylinder length caused by wave 
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interferences due to phase shifts from contributions along 
the cylinder axis. 12 

In this paper, scattering of spherical waves by a cylin- 
der is reconsidered by including the transducer directivity 
effects. By using the concept of volume flow, which was 
first applied by Skudrzyk 13 in deriving a radiation formula, 
and later adapted by Stanton 7'8'12 to the scattering prob- 
lem, an analytic solution is obtained in the form of a one- 
dimensional integral, which is well-behaved, is readily eval- 
uated numerically, and can be solved analytically in certain 
limiting cases. The results are primarily based on Sheng's 
doctoral thesis. TM Similar solutions have been obtained in- 
dependently by Guffey and Stanton. 15 The number of 
Fresnel zones insonified by the incident wave at the cylin- 
der governs the behavior of the solution, in a manner anal- 
ogous to plane wave scattering by finite-length 
cylinders. 4'7'12 The solution includes the effects of the trans- 
ducer directivity and the transmitted pulse length. This 
permits us to address a practical problem: the use of cylin- 
drical wires as standard targets for calibrating monostatic 
transceivers. Measurements are made using stainless steel 
wires and narrow-band transceivers at three different fre- 

quencies in the megahertz (MHz) range. The measured 
backscatter is compared with the size/frequency and range 
dependencies predicted by theory. 

Spheres have been widely used as standard targets for 
calibration purposes, 16'17 but cylinders have not. Spheres 
have the advantage that their target strength is indepen- 
dent of orientation. In some applications, however, it can 
be difficult to suspend a spherical target in the acoustic 
beam. This may be the case, for example, with narrow 
beam acoustic sounders operating at MHz frequencies. 
Then, spheres of sizes such that ka is O(1) are so small 
that scattering from the supporting structure may not be 
negligible. [It is desirable that ka be O(1) to avoid reso- 
nances in standard target applications, since the positions 
of the resonances are very sensitive to the elastic properties 
of the target.] In such cases thin wire targets spanning the 
entire acoustic beam offer a possible alternative, since the 
support points for the wire are then well outside the beam. 
This alternative is explored in this paper. 

The paper is organized as follows. Section I presents 
the theory for backscattering of a spherical wave incident 
on a cylinder of arbitrary length. Backscattering character- 
istics of monostatic pulsed systems are investigated, incor- 
porating the effects of the transducer directivity. In Section 
II a brief description of the laboratory setup is given, fol- 
lowed by Sec. III comparing the analytical results with 
experimental data. Section IV considers the thin-wire stan- 
dard targets used to determine the overall sensitivity con- 
stants of the transceivers. 

I. THEORY 

We deal only with the case in which the effective 
length of the cylinder is much greater than its diameter, so 
that end effects can be assumed to be small. 7 The geometry 
of the problem is sketched in Fig. 1. 

Consider first a continuous plane wave normally inci- 
dent on an infinite cylinder. The acoustic axis is orthogonal 

CYLINDER•-• 

R 

FIG. 1. Coordinate system. 

to the longitudinal axis of the cylinder, taken to coincide 
with the z axis (Fig. 1). An analytical expression for the 
backscattered pressure was obtained by Faran 1 and can be 
written as 

Ps=Pi f o• (x)exp i kr- , (1) 

after suppressing the time dependence. Here, Pi is the inci- 
dent plane wave amplitude, r is the perpendicular distance 
from the cylinder to the field point, and x = ka, k being the 
wave number in the ambient fluid and a the radius of the 

cylinder. In Eq. ( 1 ) f o• (x) is the far-field backscatter form 
factor, which can be expressed by 

2i o• 

fo• (x)= -- • Y0 (-- 1)hen sin ,/n exp(--i,/,), (2) 
where the Neumann factor e,= 1 for n=0, and e,=2 for 

1 
n> 1, and •, is the phase shift of the nth partial wave. 

The far-field backscattered pressure from an infinite 
cylinder can be analogized by a linear distribution of point 
sources of constant intensity along the z axis. 7'8 The con- 
tribution from an infinitesimal segment of length dz to the 
total scattered pressure is TM 

ikp•cq 
dps = -- 4•• exp (ikrs) dz, ( 3 ) 

where c is the sound speed in water, r s is the distance from 
the segment dz to the field point, and q is the volume flow 
per unit length, which is assumed to be invariant regardless 
of the length of the cylinder. The total pressure is the line 
integral of dps along the axis of the cylinder: 

ikp•cq f • exp(ikr s) Ps = 4• • rs 

-- •8•kr eXp i kr-- • , (4) 
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after making use of the result is 

f _' exp( ikrs) -- ircH(ol ) ( kr) ' oo rsdz 

where H0 (1) is the zeroth-order cylindrical Hankel function 
of the first kind, with asymptotic form 

H(01) (kr) --} •2/rckr exp [ i( kr- rc/4 ) ] 
for large kr. 

Comparing Eqs. ( 1 ) and (4), the volume flow per unit 
length of an infinite cylinder can be expressed in the form 

q= kp•c ' (5) 
The above expression is also taken to be the volume flow 
per unit length of a finite cylinder, in accordance with the 
thin-cylinder assumption made earlier. 7'8'12 

A. Continuous signal 

We now consider the case in which the incident wave 

is spherical and continuous. In the coordinate system 
shown in Fig. 1, a continuous spherical wave incident on 
the cylinder can be expressed as 

exp(--aors) 
pi=p,r,D(13) exp[ik(rs-ro) ], (6) 

rs 

where p, is the on-axis pressure amplitude at the reference 
distance r,, a0 is the attenuation due to water, D is the 
transducer directivity,/3 is the polar angle with respect to 
the acoustic axis, and r 0 is the perpendicular distance from 
the cylinder to the transducer. The term exp[ik(rs-ro) ] 
accounts for the phase of the spherical incident wave at 
different positions along the cylinder. 

The volume flow per unit length q in this case can also 
be expressed by Eq. (5). Based on Eq. (3), the contribu- 
tion of a segment dz to the total backscattered pressure can 
therefore be written as 

dps = --ipiD exp(--aors) • rs f oo (x)exp(ikrs)dz. (7) 
The total scattered pressure from the cylinder is 

ps = -- ip,r, f oo (x) 

f r/2 exp [ ik ( 2rs- ro) - 2aors ] X 19 2 dz, (8) 
J -- L/2 l•s 

where L is now the effective length of the cylinder which, 
for the geometry in Fig. 1, is determined by the transducer 
beamwidth. That is, 

L = 2r0 tan/3m, (9) 

where/3rn is some maximum value of/3 chosen on the basis 
of the directivity pattern. 

From Fig. 1 we have r s = r0/cos/3 and 
dz=ro/cos2i• dO, so that the total backscattered pressure 
can be written as 

12_•ro exp( -- 2ao r) Ps=p,r,F(ro) f oo (x) 
ro 

Xexp i(kro-•), (10) 
with 

F (r0) = exp -- i /)2 exp [ ( 2ikro - 2a0r0) 

X (sec/3-- 1 ) ]d/3. ( 11 ) 

It should be noted that in water ao•k for sounders oper- 
ating in the MHz range and below, so variations due to 
exp[--2a0r0(sec/3-- 1 )] in Eq. ( 11 ) are small and can be 
ignored. 

The behavior of the above integral depends on the 
number of Fresnel zones of the cylinder that contribute to 
the backscattered signal. 1• The radius of the nth Fresnel 
zone is 

hn= •nro•/2, (12) 
where/[ is the wavelength of the sound in the ambient 
fluid. If the main lobe of the transducer beam pattern is 
spanned by the first Fresnel zone, then the contributions 
from different positions along the cylinder to the backscat- 
tered wave are approximately in phase. This is equivalent 
to the case of a short cylindrical scatterer. If, on the other 
hand, the main lobe encompasses many Fresnel zones, then 
the situation is equivalent to scattering from an infinitely 
long cylinder. 

It is convenient to define the parameter •p such that 

r0 tan/3m /-• tan/3 m , (13) •P(rø) = «• 
which is the ratio of the radius of the main lobe of the 

transducer directivity pattern, r 0 tan/3 m, to the radius of 
the first Fresnel zone. Here, •p < 1 corresponds to the short 
cylinder case. The infinite cylinder case is approached as 
½-• oo. It is more general, therefore, to consider F to be a 
function of •p. After substituting for kr o we have 

1/-•lP(t'0) --i(rr/4)fl m F(r0) = tan/3• e D 2 

'>i,,,-,t3tro) (sec/3-- 1 ) •d/3. ( 14• X exp .... v , tan •'/3m J ' 
For a circular transducer of radius ao, uniformly sen- 

sitive over its surface, the far-field directivity pattern is 
given by 19 

2.11 ( kao sin/3) 
D= . (15) 

kao sin/3 

The half-power angle/3 o is given by 

kao sin/30 = 1.616. (16) 

In this paper/3 m is defined as the angle corresponding to 
the first zero of D, or 
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FIG. 2. Calculated values of I FI and © as a function of •p for a trans- 
ducer with/gm = 4.7 5 ø. 

kao sin tim= 3.832, (17) 

since the region/•0 </• </•m contributes about 25% of the 
integral, while the contribution from /g>/•m can be ig- 
nored. 

Writing F= I rlexp(iO), numerical results for I rl 
and © are shown in Fig. 2 for/•0=2 ø (/•m--4.75ø). Here, 
I FI increases linearly for •p < 0.5 and tends to 0.7 for very 
large •p. Additionally, © shifts from --45 ø at •p=0 to 0 ø at 
very large •p. Analytical results for F applicable in the 
limits •p• 1 and •p>> 1 are (see the Appendix): 

[0.636•pe -i(rr/4) (•b,• 1), 
F(rø) = ! 1/V• (•b>) 1), (18) 

consistent with the numerical calculations in Fig. 2. These 
results imply that the scattered pressure from a short cyl- 
inder increases linearly with cylinder length, while the 
scattered pressure from an infinite cylinder is independent 
of length, consistent with earlier results 7'8 for plane wave 
scattering. For example, an expression for the scattered 
pressure from a short cylinder can be obtained from the 

I 
i 

, k , 
49 5O 51 52 54 

! 

f = 1 MHz 

r o "' 50 cm 
r= 20/•s 
.8,,,= 4.7 ø 
qP = 2.2 

I 

53 

FIG. 3. Variations of I FI with respect to the position of the pulse front 
for •p= 2.2. 

infinite cylinder solution by replacing F(r 0) in Eq. (10) 
with 

0.636V2•b exp [ - i(•r/4) ]=0.636(L/xf•-o•) 

X exp[ --i(•r/4) ], 

from Eq. (18). 

B. Pulsed signal 

We next consider the case in which the spherical inci- 
dent wave is pulsed rather than continuous. Referring to 
Fig. 1, r 1 is the distance between the transducer and the 
leading edge of the pulse and r is the duration of the trans- 
mitted pulse. The contribution of a segment dz to the total 
backscattered pressure takes the same form as that in the 
continuous incident wave case. The limits of integration for 
Ps in this case, however, depend on the position of the pulse 
relative to the axis of the cylinder. By analogy with Eq. 
(10), we express the total scattered pressure in the form 

12•r0 exp( -- 2a0r0) ps--p,r, Fp( ro) f oo ( x ) 
ro 

Xexp i(kro-•). (19) 
Here, F•, is given by 

Fp(r o ) = • e-i(*r/4) 
X 1) 2 exp[2ikro(sec/•-- 1 ) ]d/•, (20) 

1 

where/•1 and/•2 are functions of r•, namely, 

fl2=arccos( ro/rl ), ro<rl<r o sec •rn, 
1 

/•2=flm, ro sec•m<rl<ro+•Cr, 

(no) J•l • arccos , 
r 1 -- 

Computed values of Ir'pl are plotted as a function of 
r 1 in Fig. 3 for/•m----4.7 ø. The corresponding value of •h is 
2.2. The frequency of the incident wave is 1 MHz, c-- 1484 
m/s, r 0-- 50 cm, and r---- 20/•s. The half-length of the pulse 

1 1 
•2=•m, ro+scr<rlx<r o seci•m+2Cr. (21) 

«cr is then 1.48 cm, which is much smaller than r 0, as 
required. These parameter values are typical of the mea- 
surements to be presented later. 

The results in Fig. 3 indicate a very rapid decrease in 
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f = 1 MHz 

ro = 50 cm 
/•.,= 4.7 ø 

L I i I I 

1 2 5 4 5 

Fresnel Zone 

FIG. 4. Variations of [r'l with the number of Fresnel zones for •b= 2.2. 

r for rl > 51.5 cm: that is, beyond r0 + «c•-. We need there- 
fore consider only the first two of the subintervals listed in 
(21 ). From Fig. 1, it can be seen that the effective length of 
the cylinder L is determined by the leading edge of the 
pulse in the first subinterval, and by the main lobe of the 
transducer directivity pattern in the second subinterval. 
That is, 

L• 
2 i•--r20, 
2r0 tan/•m, 

ro•rl 4to sec •m, 

r 0 sec 
(22) 

This yields the number of Fresnel zones np contributing to 
the backscatter in the pulsed case: 

(k/o/T/' ) (J•l/r20 -- l ), FO<E 1 <F 0 sec •m, np-- (kro/•r)tan: Bm, rosec Bm<ri<ro-F«c•', (23) 

which is obtained by solving for n in Eq. (12) after sub- 
stituting L/2 from œq. (22) for 

For •b=2.2 (Fig. 3), the main lobe spans several 
Fresnel zones. As shown in Fig. 4, I FI increases to a 
maximum value in the first subinterval r0•rl•r0sec tim 
(50.0 to 50.2 cm), and then oscillates with decreasing am- 
plitude about an intermediate value. In the second subin- 
terval (50.2 < ri < 51.5 cm), I r'l remains constant. The 
variations of IF I in the first subinterval are due to the 
phase differences introduced as an increasing number of 
Fresnel zones are insonified. 

These variations can be seen more clearly in Fig. 4, 
which shows the behavior of I FI as a function of the num- 
ber of Fresnel zones contributing to the backscatter. The 
computation was made by setting Bl=0 and B2=arctan 
(h/to) in Eq. (20). The solid line in Fig. 4 denotes the 
results for a directional transducer with tim =4.7ø, while the 
dashed line represents the omnidirectional transducer. It 
can be seen that in both cases I FI increases with n up to 
n•0.7, at which point a maximum value is reached, the 
magnitude of which is reduced in the directional case. For 
n > 0.7, IF[ oscillates with decreasing amplitude as n in- 
creases, although these oscillations are barely discernible 
for the narrow-beam case. Returning to Fig. 3, ne increases 
from 0 to 4.7 as rl increases in the first subinterval, and 
remains constant and equal to 4.7 in the second subinter- 
val. From Fig. 4, the maximum backscattered pressure 
should occur for ne•0.7, or at r1•50.03 cm [from Eq. 
(23)], which is the position of the peak in Fig. 3. 

49 

r,+ c•'/4 
i 

i I i i 

f = 1 MHz 

• r, = 50 cm 
•'= 20/•s - 
•,,= 4.7 ø 
tp = 2.2 

50 51 52 55 54 

(om) 

FIG. 5. Same as in Fig. 3, except the data are low-pass filtered (cutoff 
frequency 75 kHz). 

In the measurements to be presented, the backscat- 
tered signal was envelope-detected. This involves full-wave 
rectifying and low-pass filtering the signal. To investigate 
the effect on the range at which the maximum detected 
backscatter occurs, a synthetic envelope-detected signal 
was constructed. The results in Fig. 3 were Fourier trans- 
formed, low-pass filtered in the frequency domain, and 
then inverse Fourier transformed to the time domain. Fig- 
ure 5 shows the results obtained using a rectangular low- 
pass filter with a cutoff frequency of 75 kHz, which is 
representative of the low-pass filter used in the experi- 
ments. It can be seen that the maximum signal occurs at 
r• =r0-F ¬c•-: that is, when the incident pulse is centered on 
the cylinder. (The sidelobes in Fig. 5 are due to the filter.) 

It is concluded from the above discussion that the 

maximum backscattered signal, detected in our type of 
pulsed system, will occur at r 1 • r 0-{- ¬C% and can be written 
ItS 

exp ( -- 2tz0r0) x 

Pmax=P*r*r'• 2-•ro f oo (x) ro 

Xexp i(kro-•), (24) 
where F takes the same form as that given by Eq. (14) for 
the continuous wave case. It can be seen, by comparing Eq. 
(24) with Eq. (10), that the analytical expression for the 
maximum scattered pressure in the pulsed case, as consid- 
ered here using envelope detection, is the same as that for 
the scattered pressure in a continuous case. 

II. EXPERIMENTAL APPARATUS 

The experiments were performed in a tank 1.3X0.9 
X 1.2 m deep. The water temperature was 23.64-0.3 *C. 
The acoustic sounders used in the experiments were Me- 
sotech model 810's operating at frequencies of 1, 2.25, and 
5 MHz, with a transmitted pulse duration of 20 •s. The 
receiver circuitry of the Mesotech 810 sounder uses time 
variable gain (TYG) to compensate for absorption and 
spreading losses. The absorption coefficient for water was 
computed using the Fisher and Simmons formula, 2ø and 
the data were recorrected to account for the difference be- 

tween the actual water temperature in the tank and that for 
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TABLE I. Radii and values of x (k•a) for the four stainless-steel wires. 

x (kca) 
a 

(/•m) •,(MHz) = 1.00 2.25 5.00 

64 0.27 0.61 1.35 

76 0.32 0.73 1.62 

102 0.43 0.97 2.15 

127 0.54 1.21 2.69 

the factory set TVG ( 10 øC). The received signals are het- 
erodyned down to 455 kHz, and then passed through an 
envelope detector. The bandwidth of the receiver and en- 
velope detector were about 100 kHz (- 3 dB). A multi- 
channel data acquisition system 21 was used to collect the 
backscatter data from 100 pings. The digitizing rate was 
200 kHz. The measured values of V represent the 100-ping 
average of the signal at the range corresponding to the 
maximum amplitude echo from the wire target. 

Stainless-steel surgical wire was used for the cylindri- 
cal targets. The wire was attached under tension to a frame 
47 cm wide, which could be translated and rotated relative 
to the acoustic beam. Four different wire radii were used, 
and are listed in Table I with the corresponding values of 
x(ka) at the three frequencies. Measurements for each 
wire were made at seven different distances from the trans- 

ducer. All wire positions were in the transducer farfield. 
The transducer beamwidths, wire positions, and corre- 
sponding values of • are listed in Table II. 

III. COMPARISON OF THEORY AND EXPERIMENT 

Figure 6 shows a typical example of the backscattered 
signal at 1 MHz. The width of the backscattered pulse in 
the figure is determined mainly by the electronic band- 
width. The wire, radius 102 pm, was located 67 cm from 
the transducer. The value of fi is about 2.4, so that the 
main lobe encompasses more than two Fresnel zones. The 
acoustic data reach a peak value at a range of 67.3 cm. It 
can be seen that the backscattered voltage profile in Fig. 6 
is comparable in shape to the filtered synthetic profile of 
Irl in Fig. 5. 

The maximum receiver output voltage V is related to 
the maximum backscattered pressure Pmax at the trans- 
ducer through 

P=A[ , 1/2, PmaxPmax ] (25) 

where A is a proportionality factor and * Pmax is the complex 
conjugate of Pmax' From Eq. (24), we have 

f=l MHz 

•'= 20•s 
/;.= 4.7* 

I I 
I I I I i . 

65 66 67 68 69 70 

FIG. 6. 100-ping average backscatter profile from a wire located 67 cm 
from the transducer. The radius of the wire is 102/•m. 

P=slrl lf(x) l exp(-aoro) (26) 2x/700 ' 
where S is an overall system sensitivity constant given by 

S=Ap,r,. (27) 

After applying the TVG correction, Eq. (26) becomes 

lf(x)l 
v-sir[ :x/T00 ' (28) 

A. Size/frequency variations 

We first examine the variation of V with cylinder ra- 
dius and incident wave frequency, at a fixed distance from 
the transceiver. This permits a direct comparison between 
measured and theoretical values of the form factor. The 

term S[ r I/2x/oo in Eq. (28) is constant. Since x is 
known, a measured value of [foo (x) [ can be determined 
for each wire from 

[ f oo <x) l =K•<ro) < (29) 
where Kv(r o) is a proportionality constant and the sub- 
script ¾ referring to the frequency. Here, Kv(r o) can be 
estimated by least squares from measurements made for 
several different wire radii at fixed r o and ¾: that is, from 
the differences between the right-hand side of Eq. (29) and 
l foo (x) I computed from theory. The resulting estimate of 
Kv(r o) is used to obtain the measured values of [foo (x) l 
from V through Eq. (29). The results at ro=85.6 cm are 
shown in Fig. 7 (a). The theoretical values of l foo (x) I, 
denoted by the solid line, were evaluated using Eq. (2) and 
the physical properties listed in Table III. 22 The measured 
form factors from all seven positions are shown in Fig. 
7(b). The agreement between experiment and theory is 
quite good: the diffraction extrema in the neighborhood of 

TABLE II. Numerical values of •b for the three frequencies at different ranges. 

B0 •m 

(MHz) (degrees) r 0-- 38 46 

•b(ro), (ro in cm) 

54 62 70 78 86 

1.00 2.00 4.75 1.88 2.07 2.24 

2.25 2.05 4.87 2.89 3.18 3.45 

5.00 1.85 4.39 3.89 4.28 4.63 

2.40 2.55 2.70 2.83 

3.69 3.93 4.15 4.35 

4.97 5.28 5.57 5.85 
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1.5 

1.0 

1.5 

1.0 

o 1.00 MHz 

(a) A 2.25 MHz 
0 -- 5.00 MHz 

• .5 1.• 1 .5 2 • 2.5 3 

88 .5 
(b) 

1 .0 1 .5 2.0 2.5 3 

TABLE III. Physical properties of stainless steel and water at 20 øC used 
in form factor calculation. 

Stainless steel a 

Density p6 7.70X 103 kg m -3 
Compressional wave speed c' 5762 m s -t 
Shear wave speed c s 3185 m s- 1 

Water 

Density P0 0.998X 10 3 kg m -3 
Speed of sound b c 1482 m s- 1 

aSee Ref. 22. 

bThe sound speed in the water is calculated using the formula giving by 
Ref. 19 with zero salinity. 

By placing the same wire at different positions, 
$ (x) I remains constant, and Eq. (28) can be re- 
written in the form 

I rl =Kr(a) 2x/•oP, (31) 

FIG. 7. Comparison between theoretical and measured values of the form 
factor If• (x) l at: (a) r0•86 cm, (b) all seven positions r0•38, 46, 54, 
62, 70, 78, and 86 cm. Theoretical values denoted by solid curve. 

x= 1, 1.5, 2, and 2.5 are reproduced by the measurements, 
as is the monotonically increasing region at small values of 
x. The measured values at 5-MHz fit the theory the least 
well of the three frequencies. There is also more scatter in 
the 5-MHz data. Both effects are partly attributed to the 
short wavelength at this frequency, which makes the mea- 
surement very sensitive to wire orientation. 

The values of Kv(r o) are listed in Table IV. Also listed 
are the values of Kv(ro)/•. These are almost constant, 
which is to be expected provided I FI is not strongly de- 
pendent on r o. From Eqs. (28) and (29), we have 

$= 2x/•o/K• (ro) F, (30) 
which indicates that the variation of K•(ro)/•o with re- 
spect to r o (Table IV) should reflect the variation of 

where Kr(a) is a proportionality constant, representing 
the factor [S •lf• (x) l ]-1. As for K•, Kr is estimated by 
least squares, minimizing the difference between the right- 
hand side evaluated from the measurements, and the left- 
hand side calculated from theory using Eq. (14). 

Measured and theoretical values of I FI are compared 
in Fig. 8(a), for a= 127 pm. The measured values of I Fml 
for all four wires are plotted in Fig. 8(b). The solid curve 
in Fig. 8 represents the theoretical calculation for Fm(r 0) 
with /5 m = 4.75 ø (or /50 = 2 ø), the values for the 1-MHz 
sounder. The theoretical curves for the other transceivers 

are similar. It can be seen from Fig. 8 that agreement 
between theory and experiment is reasonably good. Also, it 
can be seen that IF I is essentially constant over the range 
of values of fi covered by the experiment. This explains the 
earlier observation that the values K•/•o in Table IV are 
nearly independent of range, and also means that the ex- 
pression for the scattered pressure tends to that for an 
infinite cylinder. 

B. Dependence on distance and effective wire length 

The dependence of V on the effective wire length is 
described by the function IF I, which in turn depends only 
on • for a given/Sin [Eq. (14)]. For a specific transceiver 
different values of • can be realized by changing r0. 

IV. THIN-WIRE STANDARD TARGETS 

The overall sensitivity constant $ for each transceiver 
can be estimated from the measurements presented in the 
previous section. From Eq. (28), the least-squares estimate 
of $ is 

TABLE IV. The values of Kv(r) and values of Kv(r)/• at seven different positions for three transducers with frequencies of 1, 2.25, and 5 MHz. 

K•(r) (V -1) K•(r)/x/• (m -1/2 V -1) 
ro 

(cm) v(MHz) = 1.00 2.25 5.00 1.00 2.25 5.00 

38 0.669 1.92 7.26 1.09 3.12 11.8 

46 0.692 1.97 7.81 1.02 2.91 11.5 

54 0.729 2.10 8.46 0.992 2.86 11.5 

62 O. 753 2.16 8.82 0.956 2.74 11.2 

70 O. 792 2.26 9.08 0.947 2.70 10.9 

78 0.830 2.39 8.48 0.940 2.70 9.62 

86 0.877 2.46 9.75 0.946 2.65 10.5 
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FIG. 8. Comparison between theoretical and measured Irl for: (a) 
a--127 btm, (b) all four wires with 64, 76, 102, and 127 btm radius. 
Theoretical values of IF[ denoted by solid curve. 

FIG. 9. Plot showing fit of wire measurements to Eq. (28) at 2.25 MHz, 
using the value of $w given in Table V (solid line). The dashed lines were 
used to determine the error bounds listed in Table V for this frequency. 

7 :,4._ •j=l --1 Polr'./I 
Sw-- , (32) 

7 

•j=l•21 iFy12xilf oo(xi) l 2 2kr• 
in which the index i refers to the different wire sizes, and 

the index j to the different positions. The foo (xi) and 1-'j 
are computed from theory. The subscript w denotes the 
wire-determined values of S. The resulting estimates of Sw 
are listed in Table V. The errors listed in the table are 

about 15%, and correspond to the full range of the scatter 
about the best fit, as illustrated by Fig. 9. 

These values of S can be compared to estimates of the 
sensitivities made independently using uniform lead-glass 
beads suspended in a turbulent jet as standard scatterers. 21 
The overall sensitivity determined by backscatter from a 
cloud of randomly moving particles is 21 

S'= B'p,r, •-• kc•' D 4 sin/3 dfi . (33) 
Using the definition Eq. (27) of S, the above equation can 
be rewritten in a form more useful for the present purpose: 

(3 ;om )--1/2 Sg= BS• •-• kc•' D 4 sin fi dfi , (34) 

where B is a constant, equal to A/B', and the subscript g 
indicates values determined from the glass bead experi- 
ments. The values of Sg for the three transceivers are listed 
in Table V, together with the ratio S•/Sg. The two types of 
sensitivity estimate agree to within a constant factor, which 
has a value between 1.3 to 1.4. 

The backscatter from fixed wires is coherent, unlike 
the incoherent scatter from a cloud of particles suspended 
in turbulence. The wire experiments therefore should rep- 
resent a measurement of the true peak backscatter ampli- 
tude, whereas the glass bead experiments provide an rms 
amt, iitude measurement. The more appropriate compari- 
son is therefore with the rms amplitudes of the wire back- 
scatter: that is with S•/V•. As shown in Table V, this 
accounts for the departure from unity in the values of 
Su/Sg . 

One can also consider the reciprocal problem: that is, 
converting the rms backscatter from the suspended parti- 
cles to equivalent peak backscatter amplitudes. This prob- 
lem depends on the statistics of the backscattered signals, 
and has been considered previously 23 for the case of 
Rayleigh-distributed amplitudes. It was shown that the re- 
lationship between the mean and mean square pressure in 
an envelope detection system is 

(p ) 2 : 'rr (p2 ) /4. (35) 

TABLE V. Transceiver sensitivities. S• taken from Ref. 21. 

(MHz) (V) (V) (V) S u• S g S u•½•S g S u• •'•S g 
1.00 1354-22 9.76 

2.25 68.9 4- 7.9 7.68 

5.00 26.04-4.5 4.12 

98.2 1.37 0.97 1.10 

49.8 1.38 0.98 1.10 

19.8 1.31 0.93 1.05 
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FIG. 10. Theoretical form factor [foo[ over the range of 0•<x•<6 for the 
cases of: (a) an elastic cylinder with the physical properties of stainless 
steel in Table III (a solid line) and the values listed in Ref. 24 (a dashed 
line); (b) a rigid cylinder with the density of stainless steel and a rigid 
cylinder of infinite density. The solid line in (b) is same as that in (a). 

This factor would increase the values of $g by • 
= 1.25, which would also largely account for the high 
S•/Sg ratios in Table V. The fact that this correction does 
not do as well as the one above is probably due to depar- 
tures from Rayleigh statistics in the signals backscattered 
from the jet. 

It is useful to consider the possible errors that would 
be introduced in the overall sensitivity constant $ estimates 
by incorrect material properties used in calculating l foo I. 
Stainless steel is an alloy, and variations in its composition 
might be important. Theoretical values of the backscatter 
form factor are shown in Fig. 10 for a number of different 
cases. Figure 10(a) shows the results for the fully elastic 
case using the parameters in Table III, and for the values 
listed in Kaye and Laby: 24 7.8 g/cm 3, 5980 m/s, and 3297 
m/s. For ka < 4, the differences are small ( < 0.3% ). Large 
differences occur in the neighborhood of the lowest-order 
resonance, the oblate-prolate mode, near ka=5. Figure 
10(b) shows the results for the rigid movable and rigid 
immovable cases, superposed on the elastic case. (For the 
rigid movable cylinder, the phase speeds c' and c• become 
infinite. For the rigid immovable cylinder, the density ratio 
P•/Po '-' oo in addition. ) These are well known effects in the 
theory of acoustic resonance scattering: 25 the position of 
resonances is very sensitive to the elastic properties, par- 
ticularly the shear wave velocity, whereas beyond the res- 
onances the scatterer behaves as if it were perfectly rigid to 
a very good approximation. The difference between the 
rigid and rigid immovable curves in the vicinity of ka = 1 is 
due to the displacement of the scatterer about its center of 
mass, which depends upon the bulk density of the scatterer 
relative to that of water. We have used two different den- 

sities (7.8 and 7.91 g/cm 3) in Fig. 10(a). This density 

change has little effect on the results near ka= 1 in Fig. 
10(a), and the densities of the different stainless steel al- 
loys are not likely to be much different. The largest value 
we have found 26 is 8.03 g/cm 3. 

The results in Fig. 10 demonstrate that it is unlikely 
that variations in the material properties of the stainless 
steel wire targets compared with those assumed in the 
computations would have contributed significantly to the 
possible error in the sensitivity constant, because the mea- 
surements were made at values of ka less than 3, well 
below the first resonance. It can also be concluded on the 

basis of the results in Fig. 10, and the reasonably high 
tensile strength and corrosion resistance of stainless steel, 
that this material is well-suited for use as a thin-wire stan- 

dard target, again provided that resonances are avoided. 
High tensile strength is required because at MHz frequen- 
cies the wire can be no more than a few tenths of a mm in 

diameter (if ka is to be less than about 3), and the wires 
must be kept under tension to maintain the aspect of a 
right circular cylinder. Corrosion resistance is valuable, 
because the target can remain immersed in water, even 
seawater, for long periods of time without suffering corro- 
sion damage. 

V. CONCLUSIONS 

Analytical results have been obtained for the scattered 
pressure field generated by a spherical wave pulse incident 
on a cylinder, by using the concept of volume flow as de- 
veloped by Stanton. 7'8 The effects of the transceiver direc- 
tivity and the finite duration of the transmitted pulse are 
included. The solution is conveniently expressed in terms 
of a single parameter •, which is the ratio of the radius of 
the main lobe of the transducer directivity pattern to the 
radius of the first Fresnel zone. As would be expected, the 
behavior of the solution depends on the number of Fresnel 
zones illuminated by the pulse. It is shown that the solu- 
tion tends in the appropriate limits to that for very long or 
very short cylinders. That is, the backscattered pressure is 
linearly proportional to effective cylinder length for short 
cylinders, and independent of length for long cylinders. 

For typical narrow-beam, narrow-band pulsed trans- 
ceivers, the expression for the peak detected signal is found 
to be the same as that for the scattered pressure amplitude 
in the continuous wave case. It then becomes possible to 
relate the backscattered pressure from a cylinder of finite 
length to that for an infinite cylinder. This result is used as 
the basis for comparing the theoretical expression with 
measured backscatter amplitudes made using high fre- 
quency acoustic transceivers and stainless-steel wire tar- 
gets. Good agreement is obtained between the measured 
form factors and those computed from the theory for an 
infinite elastic cylinder. Good agreement is also obtained 
between the experimentally and theoretically determined 
dependence of backscatter amplitude on the range from the 
transducer. Finally, estimates of the transceiver sensitivi- 
ties are made from the wire target measurements. These 
are found to agree well with independent measurements 
made using backscatter from standard particles in suspen- 
sion, provided that an appropriate correction is made for 
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coherent versus incoherent scattering. This result indicates 
that effective use can be made of thin wires as standard 

targets in the transducer far field especially at MHz fre- 
quencies, for which scattering from the support structure 
required by other types of fixed target can be problematic. 

APPENDIX: F IN TWO LIMITING CASES 

For simplicity, we consider narrow beamwidths, for 
which 2imk2(sec/•- 1 )/tan 2/•m can be approximated by 
i•r•B2/B•m ( = ikrB 2). Therefore F in Eq. (14) can be ex- 
pressed by 

V•p _ i(9/4) fo •m r' = • e /)2 exp (i•'•21•2/1•2,n) d/•. (A 1 ) 
For •b< 1, the effective length of the cylinder is much 

smaller than the diameter of the first Fresnel zone. The 

variations of exp(2isr•3/•2//• m) in the main lobe of the 
transducer directivity are small. The integral in Eq. (A1) 
can then be evaluated by the method of stationary phase, 
giving 

V•p -i(•/4) f0 •m I": •m e /)2 dB (•P,• 1). (A2) 
The integral f0•mD 2 d/• in the above expression is constant, 
and equals 0.450/•m for narrow beam systems. By using this 
result in Eq. (A1), then the expression for r' for •p<l in 
Eq. (18) can be obtained. 

For •p•, 1, the effective length of the cylinder is much 
greater than the diameter of the first Fresnel zone, which is 
equivalent to very large values of kr for a given/•m' The 
variation due to exp(irr•2B2/B2rn) in the main lobe is rapid, 
and its period becomes shorter for larger/•. It can be ex- 
pected that the main contribution to I FI comes from the 
first several periods of exp (irc02/•2//•2 m ) [= exp ( ikr/• 2) ]. We 
have 

•bfo•mD2exp[ •2 m )d• 

<•p exp 2 dB (•p>> 1), (A3) 

where D, is the value at some/• located in the first several 
cycles of exp(i•r•/•2//• m). The value of D, is set to unity 
in the last expression in Eq. (A3). It can be expected that 
the inequality in Eq. (A3) becomes an identity when 
lp--, oo. Since 27 

lim •p exp 2 d]• -- ei( rr/4 ) 
lp--, oo Brn 

(A4) 

then, the substitution of Eq. (A4) in Eq. (A 1 ) gives the 
expression for F for •b•, 1 in Eq. (18). 
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