
Resonant modulation of the flow in a tidal channel

Julia C. Mullarney,1 Alex E. Hay,1 and Anthony J. Bowen1

Received 24 August 2007; revised 26 June 2008; accepted 17 July 2008; published 11 October 2008.

[1] The coupling between a quarter-wave resonance in a coastal bay and a Helmholtz
mode in an adjacent cove (connected to the bay through a narrow channel) is
investigated by comparing field measurements to analytical and numerical model
predictions. Pressure and velocity spectra from locations throughout the bay reveal an
oscillation with a period of approximately 1 hour, consistent with a quarter-wave seiche
mode. The associated sea surface displacements throughout the bay are small (less than
5 cm RMS, i.e., only 10% of the tidal elevation). Velocities within the channel are
significantly modulated in the 1-hour band, with amplitudes up to 40% of the peak tidal
current. The analytical model shows that the modulation of the channel flow results from
the interaction between the quarter-wave mode in the main basin and a Helmholtz
resonance in the cove, also with a period near 1 hour. The amplitude and phase of the
1-hour oscillation varies through the tidal cycle because of the change in Helmholtz
frequency with tidal elevation. Good quantitative agreement between the data and the
model predictions is obtained if a drag coefficient approximately 3–4 times larger
than the classical value of 3 � 10�3 is used in the channel and cove.
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1. Introduction

[2] Oscillations or seiche motions are ubiquitous features
in coastal bays and harbors [Miles, 1974]. Often, they are
excited by atmospheric disturbances [e.g., Munk et al.,
1956; Tintoré et al., 1988; Gomis et al., 1993; de Jong et
al., 2003; de Jong and Battjes, 2004]. This paper explores
the effects of such an oscillation, which also forces a
Helmholtz resonance in an adjacent cove, on the dynamics
of the flow within a tidal channel in Lunenburg Bay, Nova
Scotia. The primary oscillation, which has approximately
1-hour period, appears to be an amplification of broad-
banded atmospheric forcing at the quarter-wave frequency
of the bay. This broadbanded forcing exists throughout the
year, is strongest in winter and appears to drive amplified sea
level variances (on timescales of hours) in all harbors with
permanent tide gauges along the Atlantic coast of Canada.
[3] Lunenburg Bay, located on the south eastern coast of

Nova Scotia (Figure 1), is the site of an interdisciplinary
coastal observatory with permanent moorings recording
hydrodynamic, atmospheric and biological data. The bay
is shallow and is linked to two adjacent coves through a
relatively narrow channel (Corkum’s Channel (Figure 2)).
During the ebb phase of the tide, water flowing from the
coves through the channel generates a strong jet in the main
bay with maximum velocities reaching 1 m s�1. This jet
dominates flows within the bay interior and is thought to
serve as an important mechanism for mixing. Observations

indicate a significant modulation of the flow in the channel,
with approximately 1-hour period and amplitude approxi-
mately 40% of the peak tidal current. It is shown that the
quarter-wave period of the main bay is close to the period of
the Helmholtz resonance of one of the coves and it is the
interaction between the two resonant modes, which causes
this significant modulation of the tidal current in the
channel.
[4] A linear analytical model reproduces the primary

features of the modulation (i.e., its amplitude and phase
along the channel), thus identifying the coupling between
the quarter-wave mode in the bay and the Helmholtz
resonance in the cove as the principal physical process.
The model includes tidal elevation, which is important
because it significantly affects the Helmholtz period, but
uses linearized bottom friction, uniform channel geometry,
and does not include nonlinear inertial terms. We implement
a fully nonlinear numerical model with realistic bathymetry
to investigate the importance of these effects. An earlier
field experiment made direct measurements of the Reynolds
stress in the channel and it was found that the coefficient of
friction in the channel was 3 to 4 times larger than ‘‘typical’’
(A. E. Hay, manuscript in preparation, 2008): the quadratic
bottom friction coefficient CD = 0.01. We explore the
importance of the magnitude of the friction coefficient,
the choice of which is found to effect the flow significantly.
On comparison with numerical model results and the field
data, the analytic model is found to capture the dependence
of the phase and amplitude responses of the oscillation on
spatial position, and to changes in the friction coefficient.
[5] In section 2, the field site, observations and data

analysis methods are discussed. In section 3, an analytical
model is described. In 4, the hydrodynamic model and
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solution methods are introduced. Section 5 compares
results from the three approaches and discusses the limi-
tations of the analytical model. Conclusions are summarized
in section 6.

2. Field Measurements

2.1. Instrument Locations

[6] The bay bathymetry and locations of instruments
deployed in 2005 are shown in Figure 2. The instrument
array was focused within and close to Corkum’s Channel.
The array consisted of three RBR TDR2050 pressure and
temperature sensors along the eastern side of the channel.
Current profiles were measured by a 2 MHz Nortek
Aquadopp and a 1 MHz Nortek AWAC deployed along
the channel axis. A 600 kHz RDI Acoustic Doppler
Current Profiler (ADCP) was placed on the ebb tide jet
axis within the main bay approximately 750 m outside of
the channel mouth. The instrumentation at each observa-
tory mooring consisted of a bottom-mounted Sontek
Acoustic Doppler Profiler (ADP) and a Seabird PT39
pressure and temperature sensor.
[7] Additional pressure and velocity data from a sepa-

rate experiment in September 2005 based around the
Sculpin Shoal region near the mouth of the bay are
included here to provide more complete spatial coverage.
While these results are consistent with those reported from
the above array, it is emphasized that the two data sets are
not concurrent. Table 1 lists the instruments used in this
study.

2.2. Data Acquisition and Processing

[8] The instruments in the channel and jet (4–9) recorded
data over the period 15–30 August 2005, with the excep-
tion of the ADCP at 8 (Figure 2), which recorded data from
17–30 August 2005. The observatory instruments were not
operational for the entire period 15–30 August, so the
longest continuous data record (during the experiment

period) was selected from these sensors. Data from the
shoal experiment were from the period 1–15 September
2005. In order to obtain the longest possible data records for
spectral analysis, values for occasional missing data points
were obtained by linear interpolation. The instrument sam-
pling protocols are listed in Table 1.
[9] The data were high-pass filtered using a Butterworth

filter (fourth-order for RBR pressure-temperature sensors,

Figure 1. Atlantic coast of Canada showing the locations of Lunenburg Bay and the other harbors
discussed in section 2.4.

Figure 2. Bathymetry and instrument locations in Lunen-
burg Bay, Upper South Cove (USC) and Lower South Cove
(LSC). The light, medium, and dark gray lines show the 5,
10, and 20 m isobaths, respectively. The symbols represent
observatory pressure and temperature sensors (closed
triangles), observatory buoy nodes (black circles), the
pressure and temperature sensors (multiplication signs),
and acoustic Doppler profilers (squares) in the Corkum’s
Channel experiment in 2005. Instruments 13–15 were
deployed as part of a separate experiment on Sculpin Shoal
(SS) in September 2005. See Table 1 for further details.

C10007 MULLARNEY ET AL.: MODULATION OF FLOW IN A TIDAL CHANNEL

2 of 20

C10007



fifth-order for all other instruments) with a cut-off frequency
of 5 cpd. Time series of quantities which have been high-
pass filtered are denoted by a prime throughout this paper.
The spectra were calculated using Hanning-windowed data
segments with 70% overlap. The spectral parameters were
chosen to give a frequency resolution of Df = 0.0417 cph
for all instruments. All corresponding spectral densities
have a minimum of 22 (pressure data) or 26 (velocity data)
degrees of freedom, except for the ADCP (at site 7) and the
ADP at site 12 (Figure 2). The pressure sensor on the ADCP
malfunctioned after 5.5 days (resulting in only 12 degrees of
freedom) and the ADP only had 4 days of continuous data,

giving 6 degrees of freedom. However, the results shown
were compared to results (from the same instrument)
obtained using a longer data record from September and
were consistent. Hence, we conclude that the results are
representative of this period. The approximate 95% confi-
dence intervals for the power spectral densities Sxx(w) are
given by

nSxx wð Þ
bn 5ð Þ ;

nSxx wð Þ
an 5ð Þ

� �
; ð1Þ

Table 1. Summary of the Instruments Deployed in Lunenburg Bay During the Summer of 2005a

Position Instrument Make Model Frequency (MHz) Cell Size (m)
Sampling

Frequency (Hz)
Time Averaging
Window (min)

1b PT sensor Seabird PT39 – – 1(on 10/15 min) 15
2b PT sensor Seabird PT39 – – 1 (on 11/15 min) 15
3b PT sensor Seabird PT39 – – 1 and 2 2
4–6 PT sensor RBR TDR2050 – – 1 1/60
7 ADCP RDI Sentinel 0.6 0.5 2 2
8 ADCP Nortek AWAC 1 0.5 6.1 2
9 ADCP Nortek Aquadopp 2 0.5 9 2
10–12b ADCP Sontek ADP 1.5 0.5 0.1 (on 10/30 min) 30
10–12b PT sensor Seabird PT39 – – 0.67 (on 10/30 min) 30
13c ADCP Nortek Aquadopp 2 0.5 14 (on 2/10 min) 10
14c PT sensor RBR TDR2050 – – 1 1/60
15c ADCP Nortek AWAC 1 0.5 4.3 (on 2/10 min) 10

aSee Figure 2. PT, pressure-temperature; ADCP, acoustic Doppler current profiler.
bIncludes instruments which form part of the coastal observatory.
cInstruments deployed in September as part of a separate experiment.

Figure 3. (a) Spectra of high-pass filtered pressure at selected locations. The solid thick line, the thin
dashed line, and the thin solid line are the power spectral densities from instruments 2, 8, and 14,
respectively (Figure 2). The thick dashed line is the spectrum from pressure sensor 1 in Upper South
Cove. The 95% confidence intervals are shown for instruments 2 and 14. (b) Spectra of high-pass filtered
velocity. The solid thick line, the dashed line, and the thin solid line are the spectra from instruments 9, 8,
and 12, respectively. The 95% confidence intervals are shown for instruments 8 and 12. In both Figures
3a and 3b the vertical dotted lines show the frequency band over which the spectra have been integrated
to give the variances used in Figure 4.
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where v is the equivalent number of degrees of freedom and
av(5) and bv(5) are the 0.25 and 0.975% points of the c2

distribution with v equivalent degrees of freedom [Priestley,
1981, pp. 467–468].

2.3. Pressure and Velocity Spectra

[10] Representative power spectra for the high-pass fil-
tered pressure data from selected instruments are presented
in Figure 3a. The pressure spectra for all instruments
(except site 3 in Upper South Cove) show a broadbanded
peak centered at f � 0.88 cph or T � 68 min and a peak at
f = 0.25 cph corresponding to the M6 tidal constituent. The
thick solid line (instrument 2, close to the head of the bay)
and dashed line (from instrument 8 in the channel) exhibit
the highest peaks, while the peak in the Sh0h0 spectrum from
the instrument close to the mouth of the bay (14) is smaller
and broader. No peak around 0.88 cph is present in the
pressure spectrum from the sensor located in Upper South
Cove, indicating that the higher frequencies were hydrauli-
cally choked at the narrow shallow entrance to this cove.
The sum of the depth-averaged power spectra of the high-
pass filtered horizontal velocity components are presented
in Figure 3b. Depth bins affected by surface interference
were not included in this calculation. The spectra similarly
reveal peaks at f = 0.25 and f = 0.88 cph and the energy
levels around f = 0.88 cph were 1 order of magnitude higher
in the channel than elsewhere in the bay. We note that, for
the spectrum from instrument 12 in Figure 3b the Nyquist

frequency is 1 cph, so there is unavoidable spectral aliasing
for this instrument.

2.4. Spatial Distribution of Elevation
Variance and Volume Flux

[11] The spectra were integrated to obtain the variances
in a frequency band centered around 0.88 cph (f = 0.68–
1.08 cph). For instruments in the bay, the pressure variances
are plotted in Figure 4a as a function of distance from the
head of the bay. For the instruments in the channel and
coves the variances are shown in Figure 4c as a function of
the distance along the channel. The error bars indicate the
upper and lower 95% confidence intervals over the same
frequency band. The distances were measured from Mason
Point (Figure 2) and calculated as illustrated in Figure 5. For
the pressure variances, the energy in the �1-hour band
decreases with distance from the head of the bay. This
spatial distribution of energy in the pressure signal is
consistent with a quarter-wave resonance in the main bay.
An estimate of the period of this fundamental mode oscil-
lation is given by

T ¼ 1þ �ð Þ 4

Z L

0

dxffiffiffiffiffiffiffiffiffiffiffi
gh xð Þ

p
 !

; ð2Þ

where h(x) is the water depth at position x and � = 0.31 is a
correction factor based on the aspect ratio (width/length) of

Figure 4. (a) Variances of the pressure spectra over the frequency band 0.68–1.08 cph and (b) estimated
RMS transport Q as a function of position in the bay (see text for details). Similarly, (c) variances from
the pressure spectra from instruments inside the channel and coves are plotted as a function of position
along the channel. The numbers correspond to instrument positions (Figure 2). The error bars show the
energy levels from the upper and lower 95% confidence intervals of the spectra.
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the bay [see Defant, 1961]. Using the depth averaged across
the bay for h(x) and integrating to the mouth of the bay (just
inside of instrument 14 (Figure 2)), we obtain T = 67 min
for an estimate of the quarter-wave resonance period, in
excellent agreement with the observed period of 68 min.
[12] The bathymetry of Lunenburg Bay is very irregular.

Hence, for a quarter-wave resonance, it is also required that
the volume flux in the resonance frequency band should
increase with distance from the head of the bay, (rather than
just the velocity variances at individual locations). There-
fore, the velocity variances were roughly extrapolated to
form an estimate of the average RMS transport over a half
cycle of the oscillation Q as

Q ¼
ffiffiffi
2

p

p
U 0

RMS
�hW ; ð3Þ

where �h is the mean depth for a cross section of width W,

and U 0
RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
u0 þ s2

v 0

q
. The results for the instruments

inside the bay are shown in Figure 4b and we note that the
evidence for such an increase of the RMS transport is
inconclusive. However, the response peak at 0.88 cph is
significant and we use the numerical simulations (section 5)
to examine the volume flux and verify the quarter-wave
resonance a posteriori.
[13] Figure 6d shows daily variances and the associated

95% confidence intervals in the 1-hour band from the
pressure sensor in Lunenburg Harbor throughout 2005.
The time series were high-pass filtered with a cut-off
frequency of 5 cpd and then split up into segments two
tidal cycles long (�25 hours). The ensemble-averaged
spectrum for each data segment was calculated with a

frequency resolution of Df = 0.17 cph. The dotted lines
mark the timing of the experiment. Similarly, the daily
variances of sea surface elevation throughout 2005 were
calculated from tide gauge data at all locations with perma-
nent tide gauges on the open Atlantic coast of Nova Scotia
and Newfoundland (Figure 1). These variances are also
included in Figure 6. All of the tide gauges were sampled at
0.25 cph. In each case the data from the experimental period
in August were used to identify the location of the high-
frequency spectral peaks. The data were integrated in a
frequency band of width 0.4 cph around a selected peak
with center frequency of 0.84 cph for St. John’s, 0.46 cph
for Sydney, 1.08 cph for Halifax Harbor and 0.96 cph for
Yarmouth. The results indicate that oscillations existed in
each harbor throughout the year. There is also a clear
seasonal variability, a greater number of large-amplitude
events occurring in the winter months. For example, during
these events in Lunenburg, the amplitude of the oscillation
of sea surface height reached up to 0.2 m in the harbor (a
factor of 4 larger than during the experimental period). The
Lunenburg results have also been compared with those from
other years (2002 and 2004) and a similar seasonal vari-
ability was found.
[14] The forcing mechanisms for these oscillations are

unclear and almost certainly vary between locations. How-
ever, there is some coherence between locations in the
occurrence of the large amplitude events. Unsurprisingly,
the correlation is highest between Halifax and Lunenburg,
which are the least separated geographically. It is common
for Fall storms to track northeastward along the coast
[Eichler and Higgins, 2006; Mulligan et al., 2006] and
these larger events are most likely related to the associated
atmospheric forcing [de Jong et al., 2003; de Jong and

Figure 5. Schematic illustrating the axial distances of the indicate of instruments. For points inside
the bay, the distance, d, is measured along the center axis from the origin O1 to the point perpendicular
to a given instrument. For instruments inside the channel and coves, the distance, x, is measured from
the origin O2 along the center axis of the channel and cove. Note that for the sensor in Upper South
Cove, d < 0.

C10007 MULLARNEY ET AL.: MODULATION OF FLOW IN A TIDAL CHANNEL

5 of 20

C10007



Battjes, 2004]. High temporal resolution atmospheric data is
not available for the region in 2005. However, the daily
variances (over the frequency band f = 0–2 cph) of recently
recorded (2007 and 2008) atmospheric pressure data at
Dalhousie University in Halifax, Nova Scotia are shown
in Figure 6f, and a similar seasonal variability to that in
Figures 6a, 6b, 6c, 6d, and 6e is observed. The atmospheric
pressure data has a broadbanded spectrum at the higher
frequencies (i.e., timescales of hours) tailing off around
2 cph. We suggest therefore that the oscillation in Lunen-
burg is an amplification of this energy at the intrinsic
frequency of the bay.

2.5. Amplification in the Tidal Channel

[15] Time series of raw and high-pass filtered pressure
data from a single day (21 August) from the ADCP in the
center of the channel (Nortek AWAC at site 8 (Figure 2)) are
shown in Figure 7a. The �1-hour oscillation is clearly seen
in the filtered data despite a small sea surface displacement
(sometimes observed to reach up to �0.08 m), relative to
the �1 m amplitude of the semidiurnal tide. Similar
amplitudes were seen at the head of the bay and in the
harbor. However, as noted previously, the energy levels of
the velocity spectra in the 0.68–1.08-cph frequency band
were greatly amplified in the channel relative to the rest of

Figure 6. (a, b, c, d, and e) Year-long records of daily variances of high-pass filtered sea surface elevation
data from harbors along the open coast of Atlantic Canada in 2005. For each location the spectra of high-
pass filtered sea surface elevation data were integrated over a frequency band of width Df = 0.4 cph
centered on a high-frequency peak (near 1 cph). The shading shows the variances of the 95% confidence
intervals. The dotted lines on the record from Lunenburg Harbor indicate the experimental period in
August 2005. The locations are arranged from north to north in Figures 6a, 6b, 6c, 6d, and 6e. (f) Daily
variances from high-pass filtered atmospheric pressure data from Halifax in 2007–2008.
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the bay (Figure 3b). In Figure 7 the velocities have been
rotated into along- and across-channel components using a
rotation angle based on a temporal mean of the depth-
averaged flow direction. The axes are aligned such that u is
the along-channel velocity and is positive at flood tide (i.e.,
flow into the coves) and v is the across-channel velocity
with positive values for eastward flow. Figure 7b shows the
along-channel tidal velocities. The maximum along-channel
velocity reached �1 m s�1, (while across-channel velocities
were typically of order 0.1 m s�1). The high-pass filtered
velocities in Figure 7c and the depth-averaged quantities in
Figure 7d reveal a pulsation in flow with amplitudes of
around 0.2 m s�1 in the along-channel direction (and 0.05 m
s�1 in the across-channel direction, not shown).
[16] The oscillation had a slight depth dependence with

larger amplitudes closer to the surface. The amplitudes of
the oscillation in the along-channel velocities reached up to
0.4 m s�1 on occasion (more frequently on the ebb), which
represents a significant modulation (40%) of the tidal
velocities. Figure 8 shows pressure data (Figure 8a) and
4-hour windowed variances of the high-pass filtered pres-
sure (Figure 8b) and along-channel velocity (Figure 8c)
from the ADCP in the center of the channel for the entire
experimental period. Figure 8 demonstrates that the oscil-
lation was always present and that the motion is quasi-
stationary over the 2-week timescale. However, there were

occurrences of larger amplitude events indicating nonsta-
tionarity over a shorter timescale.
[17] An analytical model showing the quarter-wave reso-

nance forcing a standing wave in the channel and pumping
response (Helmholtz mode) in Lower South Cove is con-
sidered in the next section. Comparison of the analytical
solutions with the field data and numerical results (section 5)
demonstrates that the field data and numerical results are
consistent with the presence of standing waves in the
channel and coves.

3. Analytical Model

[18] Helmholtz oscillations often arise in basins attached
to a large body of water through a channel or constriction.
In coastal regions, they are typically generated by external
oscillatory tides. The Helmholtz resonance is the lowest
mode of response and involves a spatially uniform oscilla-
tion in sea surface elevation. Lateral motion is confined to a
region near to the mouth of the basin. The mode has
been called a pumping [Lee, 1971] or co-oscillating mode
[Platzman, 1972] and it has been extensively studied [e.g.,
see Miles and Lee, 1975]. The response has also been
examined in more complicated geometries, such as for a
basin with sloping sidewalls [Green, 1992] or a sloping
bottom [Maas, 1997]. However, for the present purposes,

Figure 7. Velocity and pressure data from 21 August 2005 in the center of the channel (Nortek AWAC
at 8 (Figure 2)). (a) Pressure both raw (thick) and the high-pass filtered pressure (thin). (b) Along-channel
velocity. Positive values indicate flow into the coves (i.e., flood tide). (c) High-pass filtered along-channel
velocity. (d) Depth-averaged along-channel velocities, both raw data (thick) and high-pass filtered (thin).
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we adopt the standard picture of a Helmholtz mode in a
uniform basin, as in the simplified geometry shown in
Figure 9. The Helmholtz resonance frequency is given by

wH ¼
ffiffiffiffiffiffiffiffiffi
Whg

AL

r
; ð4Þ

where A is the basin area and L, W and h are the channel
length, width and depth, respectively. The resonance period
for Lower South Cove is poorly constrained. Uncertainties
arise in the definition of the location of the end of the
channel or start of the Cove (particularly given the channel
curves), the channel width (whether or not to include the

quiescent regions of almost no flow at the sides) and the
depth is not completely uniform. Nonetheless, we can
estimate �h = 5 m, L = 1–2 km, W = 200–400 m and A = 2–
3 � 106 m2, which gives TH = 60 ± 20 min for the
Helmholtz period. Importantly, the Helmholtz frequency
and the friction term depend on the water depth �h + hM2(t)
and tidal velocity UM2, which vary throughout the tidal
cycle. The base Helmholtz period TH0 is modified as

TH tð Þ ¼ TH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

�hþ hM2 tð Þ

s
: ð5Þ

Figure 8. Velocity and pressure data over the experimental period from the center of the channel
(Nortek AWAC at 8 (Figure 2)). (a) Pressure. (b) Windowed (4 hours) variance of high-pass filtered
pressure. (c) Windowed (4 hours) variance of high-pass filtered along-channel velocity.

Figure 9. Schematic domain for the analytic model. The depth of the channel is h(x,t).
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This dependence on the phase of M2 tide has been included
(as cos and sin terms for UM2 and hM2, respectively) in later
calculations of amplitudes and phases. We note also that
friction acts to decrease the Helmholtz frequency, so the
actual Helmholtz period will be increased slightly above the
values in (5).
[19] Position along the channel is given by x, with the

origin at the channel entrance and x = L at the entrance to
the cove. Sea surface elevation is denoted by h, and along-
channel velocity by u. The flow within the channel is forced
by an oscillatory variation in sea level at the channel
entrance. The response in the cove is assumed to be a pure
Helmholtz mode, i.e., the sea surface elevation executes a
spatially uniform oscillation. Conservation of mass ensures

@h
@t

¼ �h
@u

@x
; ð6Þ

and the momentum equation, ignoring the inertial accelera-
tion terms, is

@u

@t
¼ �g

@h
@x

� t
r0h

; ð7Þ

where t is the bottom stress given by,

t
r0

¼ ruh; ð8Þ

with

r ¼ CD Uj j
h

; ð9Þ

where CD is the drag coefficient for quadratic friction and U
is the total velocity (tidal plus oscillation) along the channel.
However, we approximate |U| as the tidal velocity |UT| to
keep the model linear. We observe that in the model the tidal
velocity goes through zero at slack tide and hence friction
also reduces to zero. This zero velocity is physically
unrealistic so we add a small RMS ‘‘noise velocity’’ un =
0.04 m/s (consistent with the velocity spectra from the
instrument in the center of the channel), to give

r ¼ CD UTj j þ unð Þ
h

: ð10Þ

The resistance factor is assumed to vary sufficiently slowly
over the 1-hour timescale that it can be taken as constant
throughout the derivation of the solutions which follows.
Hence, differentiating (6) with respect to x and (7) with
respect to t and combing, yields

@2u

@t2
þ r

@u

@t
¼ gh

@2u

@x2
: ð11Þ

The boundary condition at the channel mouth (x = 0) is

h ¼ af exp iwf t
� �

; ð12Þ

where af and wf are the forcing amplitude and frequency (in
rad/s, w = 2p f for f in Hz), respectively, i.e., in the present
case, the amplitude and frequency of the quarter-wave

oscillation at the channel entrance. Both af and wf are real.
The boundary condition at the end of the channel and
entrance to the cove (x = L) is that for any pumping mode
(including a Helmholtz resonance), i.e.,

@h
@t

¼ hW

A
u L; tð Þ: ð13Þ

The governing equation (11) is satisfied by a wave solution
of the form

u x; tð Þ ¼ aeikx þ be�ikx
� �

eiwf t; ð14Þ

where a and b are constants and k is the wavenumber.
Substituting into (11) gives

k2 ¼ wf

gh
wf � ir
� �

ð15Þ

and therefore

k ¼ wfffiffiffiffiffi
gh

p 1� ir

wf

 �1=2

: ð16Þ

Noting that r/wf � 1, we expand (16) as

k � wfffiffiffiffiffi
gh

p 1� ir

2wf

 �
; ð17Þ

i.e.,

k � k0 � ig; ð18Þ

where

k0 ¼
wfffiffiffiffiffi
gh

p and g ¼ r

2
ffiffiffiffiffi
gh

p : ð19Þ

The wave decay lengthscale is given by 1/g and is around
40 km for a drag coefficient of CD = 0.0023. Therefore,
the solution (14) is a standing wave pattern composed of
two weakly decaying waves propagating in opposite
directions. Applying equation (6) and the boundary
condition equation (12) yields

b ¼ wf af

kh
þ a ð20Þ

and using equation (13)

a ¼ 1

2 cos kL

iwf Aâ

hW
� wf af e

�ikL

kh

 �
; ð21Þ

where â is the surface elevation amplitude inside the cove
(x  L). Upon substitution of the Helmholtz frequency
wH
2 = Whg/AL and after some algebraic manipulation,

this amplitude is given by

â ¼ af

cos kL

kLw2
H

kLw2
H � w2

f � irwf

� �
tan kL

2
4

3
5: ð22Þ
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An alternative and elegant derivation of equation (22)
above, was brought to our attention by Professor J.A.
Battjes in his review of the manuscript and follows
Dronkers [1964] (by writing the linearized equations for
flow in a prismatic channel in terms of the surface
elevation h and discharge).
[20] Hence, the final solutions for h(x,t) and u(x,t) are

h x; tð Þ ¼ a xð Þeiwf t ¼ af e�ikx þ F kL;wH ;wf

� � sin kx
cos kL

� �
eiwf t;

ð23Þ

and

u x; tð Þ ¼ af wf

kh
e�ikx þ iF kL;wH ;wf

� � cos kx
cos kL

� �
eiwf t; ð24Þ

where

F kL;wH ;wf

� �
¼

w2
f � irwf

kLw2
H cos kL� w2

f � irwf

� �
sin kL

þ ie�ikL

2
4

3
5:
ð25Þ

We define the dimensionless magnitude and the phase of the
sea surface oscillation along the channel (relative to the
channel entrance) as

Gh xð Þ ¼ a xð Þj j
af

ð26Þ

and

fh xð Þ ¼ tan�1 = a xð Þ½ �
< a xð Þ½ �

 �
: ð27Þ

For a channel of depth h = 5 m, the shallow water wave
speed is c � 7 m s�1. Therefore, a forcing period of 68 min
results in a wavelength of 28.5 km, more than 10 times
longer than the channel length of 2 km. Hence, a small kL
approximation can be made and the following expression
for â is obtained

â � af w2
H

w2
H � w2

f þ irwf

¼
af w2

H w2
H � w2

f

� �
� irwf w2

H

h i
w2
H � w2

f

� �2
þr2w2

f

; ð28Þ

which is the solution to the simplified forced (Helmholtz)
oscillator problem with constant u, and h a linear function of
x. Furthermore, the phase is seen to depend on the relative
magnitudes of the forcing and Helmholtz frequencies. The
imaginary part of (28) is always negative. If wH < wf, then
the real part of (28) is positive so the phases at x = L must lie
between 0 and �90�, whereas if wH < wf, the real part is
negative and the phases will fall between �180� and �90�.

[21] It is also instructive to consider the small kL approx-
imation for a(x):

a xð Þ ¼ af

�
w2
H � w2

f

� �2
þr2w2

f þ w2
f w2

H � w2
f � r2

� �
x=L� irwf w2

Hx=L

w2
H � w2

f

� �2
þr2w2

f

2
64

3
75:
ð29Þ

The third term in the numerator demonstrates that the
oscillation amplitude also depends on the relative magni-
tudes of the forcing and Helmholtz frequencies (wf and wH).
If wH < wf, this term provides the single negative
contribution to ja(x)j and reduces both the amplitude and
the rate of change of amplitude along the channel compared
to the case in which wH > wf. However, the expression (29)
indicates that the value of r and hence CD will have a large
effect on the amplitude along the channel. For CD = 0.0023,
it is found that the squared contribution from the fourth term
dominates the numerator, while for CD = 0.01, this
contribution is balanced by the large negative term (for
wH < wf and wH � wf). Additionally, for CD = 0.01 the
denominator of (29) is 1 order of magnitude larger than for
CD = 0.0023. This dependence on friction is indeed clearly
seen in the solutions plotted in Figure 10. The solutions are
for a case with wH < wf, (wH = 1.34 � 10�3 rad s�1 and wf =
1.54 � 10�3 rad s�1, or TH = 78 min and Tf = 68 min). The
solutions using CD = 0.0023 are shown by the thin lines,
while the solutions using CD = 0.01 (thick lines) show that
the amplitude at the end of the channel is reduced by a
factor of 2 relative to the low-friction case. The phases in
the two solutions differ by 33� at the end of the channel and
up to 66� at x/L = 0.48. Further results are plotted in section
5 for comparison with numerical results and observations
(Figures 11, 12, 13, and 14). The variation of the resistance
factor over the tidal cycle has been taken into account as
shown in equation 10 in the calculation of all results shown
in Figures 10, 15, 16, 17, 18, and 19. Figures 17 and 18 are
analytical solutions showing the modulation of the 1-hour
oscillation by the tidal flow, whereas Figures 10, 15, 16, and
19 show tidally averaged quantities, which are denoted by
an overbar throughout the manuscript.

4. Numerical Modeling

[22] Numerical simulations were conducted using the
hydrodynamic package Delft3D in depth-averaged baro-
tropic mode. The simulations aimed to examine whether
the simple physics in the well-constrained analytical model
were sufficient to understand predictions from the numerical
model, which includes the nonlinear terms and more real-
istic geometry and bathymetry. In particular, we aimed to
determine whether the simulations gave closer agreement to
the field data than the analytical model. Moreover, the
simulations allowed investigation of the response of the
system to changes in friction coefficient and forcing fre-
quency. The Delft3D-FLOW module solves the unsteady
shallow water equations for an incompressible fluid. The
equations were discretized on a staggered (Arakawa-C)
grid. For details on numerical aspects of the model and its
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extensive validation see, for example, papers by Elias et al.
[2000] and Lesser et al. [2004].

4.1. Model Configuration

[23] We consider a simplified model in which flow is
forced only at the open boundary of the bay. We force at the
frequency of the M2 tidal constituent. As the forcing for the
quarter-wave oscillation most likely originates from outside
the bay, we also apply a forcing component for a range of
oscillation frequencies at the open boundary. No atmospheric
forcing is applied.
[24] Zero normal velocity and free slip (no shear stress)

conditions are applied at the closed boundaries. At the open
boundary the flow is forced with a harmonic Riemann
boundary condition. This condition is based on a linearized

Riemann invariant, FR = U+h
ffiffi
g
h

q
, (units m s�1). The

condition is nonreflective for outgoing waves normal to
the boundary and reduces reflections for obliquely incident
waves. Thus, F(t) is specified on the boundary, where

F tð Þ ¼
X
i

FRi cos wit � fið Þ; ð30Þ

in which wi and fi are the frequency and phase of
component i.

4.2. Solution Methods

[25] A uniform grid with resolution of 60 m was imple-
mented within Lunenburg Bay and an idealized outer
domain (Figure 11). The large grid was used to ensure that
the frequency of any numerical oscillations (or eigenmodes)
of the domain was distinct from the forcing frequency.
Output variables at the observation points (including the
locations of the instruments) were written to file every
2 min. The simulations were started from rest with uniform
sea surface displacement h throughout the domain and
evolved to a cyclicly steady state. The time step was 15 s.
The amplitude of the initial transient was reduced by using a
smoothing time of 600 s, during which the boundary forcing
was gradually applied. A horizontal eddy viscosity of vH =
1 m2 s�1 was used. Forcing at two frequencies was applied
through the Riemann boundary conditions: the M2 tidal
frequency (with amplitude FR = 0.35 m s�1); and one other
‘‘oscillation’’ frequency (with amplitude FR = 0.005 m s�1).
The values of the Riemann invariants FR were chosen to
give flow conditions, which were representative of the field
conditions (especially those in the channel) during the
experiments. That the model performance does, in essence,
reproduce the field conditions is later demonstrated in
Figures 12 and 13 and the following section.

Figure 10. (a) Dimensionless magnitude and (b) phase of sea surface elevation along the channel
(relative to the channel entrance) as given by (26) and (27). The solutions are means over the M2 tidal
cycle. Thick lines indicate CD = 0.01, thin lines indicate CD = 0.0023, and dashed lines indicate the small
kL approximation. TH = 78 min, Tf = 68 min, and L = 2000 m.
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[26] Although the Helmholtz period cannot be determined
precisely from the bathymetry, with the numerical simula-
tions it is possible to examine the effect of the relative
magnitudes of TH and Tf (as predicted by the analytical
model to be important) by varying instead the period of the
forcing. If we assume the maximum amplitude response of
the oscillation occurs when the forcing frequency is close to
the Helmholtz frequency, then these runs also allow for
estimation of the actual Helmholtz period. Hence, a set of
runs was conducted in which the oscillation frequency
ranged from f = 0.58 cph to f = 1.38 cph and included the
observed quarter-wave resonance frequency (f = 0.88 cph).
For some simulations a uniform bottom friction coefficient
was used, CD = 2.3 � 10�3. Other runs were conducted
using a variable bottom friction coefficient. Although no
measurements of the bottom friction coefficient have been
made inside the coves, we hypothesize that its value will be
closer to that inside the channel than the value in the bay,
owing to the similarity of bottom type and water depth
between the channel and coves. Therefore, for some runs
the measured (in the channel) high value of CD = 0.01 was
used inside the channel and coves, while in others a low-
value CD = 6.1 � 10�5 was also used. In the main region of
the bay, the coefficient remained at CD = 2.3 � 10�3. A

roughly semicircular region of radius 700 m at the channel
mouth was used to smooth CD between the two sections.

5. Results

[27] The model was run for several tidal cycles and all of
the results shown here are from the periodically steady state.
We note that the aim of the present simulations is not to
reproduce observed flows in exact detail but rather to
examine the interaction of a small amplitude oscillation
with the tidally forced flows and Helmholtz resonance.
Despite the relatively simple boundary conditions, the
simulations capture the dominant large-scale flow features
(Figures 12a and 12b): the pronounced jet on ebb tide, the
asymmetry of flow between the ebb and flood phases of the
tidal cycle and the choking of the flows by the constriction
into Upper South Cove (Figure 2). These results are in
reasonable agreement with other more detailed studies of
the bay [Sturley and Bowen, 1996; Sheng and Wang, 2004].
[28] The time series of predicted sea surface elevation

from the model reveals an M2 tidal amplitude at the
entrance to the channel (instrument 4 (Figure 2)) of around
0.7 m, close to the observed values for the experimental
period (Figure 13a). Similarly, the high-pass filtered ampli-
tudes of sea surface elevation (dominated by the oscillation

Figure 11. (top) Numerical domain and bathymetry showing Lunenburg Bay connected to an idealized
outer domain. Forcing was applied at the outer north, east, and north boundaries, indicated by the thick
black lines. (bottom) The location of measurement points (instrument locations and selected others) for
the phase difference calculations (see section 5.1). Phase differences were calculated relative to the
pressure sensor at the channel entrance (addition signs). The remaining symbols indicate points in the
main bay (open circles), instruments in the channel and Lower South Cove (closed circles), and pressure
sensors in the harbor and Upper South Cove (closed triangles).

C10007 MULLARNEY ET AL.: MODULATION OF FLOW IN A TIDAL CHANNEL

12 of 20

C10007



in the �1-hour band) between the model and field data
are in good agreement, with maximum values of around
0.1 m and typical values of around 0.06 m, although there is
considerably more variability in the field data (Figure 13b).
Inside the channel (instrument 8 (Figure 2)), maximum
predicted northward velocities were around 0.4 m s�1,
which matched the lower end of the range observed
values (Figure 13c). However, as in the field observations,
the predicted M2 tidal velocities were substantially modu-
lated (by 0.2 m/s, or 45%) at the oscillation frequency
(Figure 13d).

[29] Figure 14 illustrates the spatial distributions of RMS
sea surface elevation and RMS velocity in response to the
forcing at 0.88 cph from a run with the higher bottom
friction coefficient. Pressure and velocity fields from the
numerical runs stored at 10-min intervals were high-pass
filtered. The RMS sea surface elevation sh0 in the frequency
band f = 0.68–1.08 cph is given in Figure 14a. The
numerical results are consistent with the sparser observa-
tional data (Figure 4a): that is, inside the bay, RMS sea
surface elevation decreases toward the mouth of the bay. As
in the field data, sh0 levels in Upper South Cove are low.

Figure 13. Observed (thick lines) and predicted (thin lines) sea surface elevations at the channel
entrance (instrument 4 (Figure 2)) are shown (a) unfiltered and (b) high-pass filtered. North-south
velocities in the center of the channel (instrument 8 (Figure 2)) are shown (c) unfiltered and (d) high-pass
filtered. Numerical results are for CD = 0.01 in the channel and coves and Tf = 68 min as in Figure 12.

Figure 12. Depth-averaged velocities from the numerical model during (a) maximum ebb and
(b) maximum flood. CD = 0.01 in the channel and coves, and Tf = 68 min.
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Figures 4b and 4c show the RMS velocity distributions, that

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
u0 þ s2

v0

q
, with the scale changed in Figure 4c to show

the spatial variation within the bay (so energy levels inside
the channel are saturated). The antinode in velocity
appears to be located at the seaward side of Sculpin Shoal
(Figure 2), in agreement with the position of the node in
surface elevation assumed for calculating the quarter-wave
resonance period in section 2.4. Energy levels outside of
this point fall off. The results also capture the large
amplification of the RMS velocities in the channel, which
are 1 order of magnitude larger than those inside the bay.
The RMS transport over a half cycle of the oscillation
from the numerical solutions was calculated along each
lateral cross section as

Q ¼
ffiffiffi
2

p

p

Z
hU 0

RMSds; ð31Þ

where s is the cross-sectional position and the results are
shown in Figure 14d as a function of distance from the head
of the bay. The results lend support to the existence of a
quarter-wave resonance, as there is indeed an increase in
RMS transport with distance (up to the assumed node
position). Moreover, the RMS transport at the node (Q �
600 m3 s�1) is in agreement (within the error bars) of that

calculated from the field observations, which were based at
a single location.
[30] A similar plot (not shown) for the run using the

canonical value for bottom friction coefficient (CD =
0.0023) demonstrates an increasing amplification of RMS
elevation into the channel and coves with maximum oscil-
lation amplitudes at the closed end of Lower South Cove.
This trend is not observed in the field data. Indeed, with the
canonical friction coefficient, the maximum amplitude of
the sea surface oscillation at observation point 3 in Lower
South Cove is 0.07 m, about a factor of 2 larger than the
amplitudes from the field data and a factor of 1.5 larger than
the high-friction run, indicating that the larger coefficient of
bottom friction is more appropriate for modeling the flow
inside the channel and coves.

5.1. Phase and Amplitude Response With Friction

[31] The phase differences (relative to the channel en-
trance) and dimensionless magnitude of sea surface eleva-
tion are shown in Figure 15 for three numerical runs, all
forced at the observed oscillation frequency (f = 0.88 cph),
and using the three different bottom friction coefficients in
the channel and coves. For points inside the main bay,
distances from the channel entrance were again calculated
along the center axis (Figure 5). For the results from the
field data and numerical simulations, the phases were

Figure 14. Predicted (a) RMS sea surface elevation, sh0, and (b) velocity,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
u0 þ s2

v0

q
, distributions in

the 0.68–1.08-cph frequency band for CD = 0.01 in the channel and coves. (c) The RMS velocities
plotted with a different scale to show the along-bay gradient. (d) The RMS transport Q through each

lateral cross section based on the RMS velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
u0 þ s2

v0

q
as a function of distance, d, from the head of

the bay.
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calculated from the cross spectra. The amplitudes were the
RMS elevations in the 0.68–1.08-cph frequency band made
dimensionless by the RMS elevations at the channel en-
trance, i.e., sh0(x)/sh0(0). Figures 5a and 5b show the phase
differences at the M2 tidal frequency, while Figures 5d, 5e,
and 5f are the (phase and amplitude) responses at the
oscillation frequency. In Figures 5a, 5b, 5c, and 5d, positive
values for the phase difference occur only in the main bay
and harbor, while phases from inside the channel and coves
are negative, consistent with the signal propagating into the
bay from outside, along the channel and into Lower South
Cove.
[32] The results show a large phase shift along the

channel, but points in the interior of the cove (distances
of >2 km from the entrance) show only a slight phase
change, indicating an almost spatially uniform response in
the cove interior. Hence, we estimate the effective length of
the channel as L � 2000 m. Indeed, the bathymetry
(Figure 2) shows there is a widening of the channel
into the cove just before the second observation point (the
second filled circle from the left in Figure 11). Figures 15a
and 15c show the dependence on bottom friction coefficient
for the phases in the channel and coves. Figure 15a for the
tidal frequency reveals that increasing the bottom friction
increases the phase shift, as expected. However, at the

oscillation frequency the opposite trend is observed, i.e.,
increasing the friction coefficient decreases the phase shift
(Figure 15c). This behavior is also captured in the analytical
model (see Figure 16 and text below).
[33] The dimensionless amplitudes of the sea surface

oscillation are given in Figures 15e and 15f. The open
circles, corresponding to points in the main bay, show larger
amplitudes close to the head of the bay (and channel
entrance), consistent with the quarter-wave oscillation
(Figure 15e). The filled circles, corresponding to locations
within the channel and Lower South Cove, show an initial
decrease in amplitude of the oscillation along the channel.
At approximately the halfway point along the channel, the
amplitudes start to increase again. This change is also
observed in the results from the field data (Figure 4c) and
the analytical solution (Figure 10a, solid line) which has a
minimum in amplitude at x/L � 0.44.
[34] The importance of the relative values of the forcing

and Helmholtz periods is examined in Figure 16. Figure 16a
shows the tidally averaged dimensionless amplitudes at the
end of the channel. As before, the amplitudes were calcu-
lated as the RMS elevations in a frequency band of width
0.4 cph centered at the forcing frequency, made dimension-
less by the RMS elevations (in the same frequency band) at
the channel entrance. The symbols show the results from the

Figure 15. Tidally averaged phases (relative to the entrance to the channel) of sea surface elevation at
the (a and b) tidal (M2) frequency and (c and d) oscillation frequency. (e and f) Tidally averaged
dimensionless sea surface elevation at the oscillation frequency. Figures 15a, 15c, and 15e show along-
channel position. Figures 15b, 15d, and 15f show position in bay. Results from the runs with CD = 0.01
(closed circles indicate channel and coves, and open circles indicate other), CD = 0.0023 (asterisks), and
CD = 6.1 � 10�5 (multiplication signs). The inset in Figure 15b shows the results from Upper South Cove
(instrument 1 (Figure 2)).
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numerical simulations, which exhibit a reduction of ampli-
tude with larger friction coefficients. The numerical system
is highly dissipative so the amplitude response curve, even
for the runs with low bottom friction, shows only a low
broad peak close to the expected resonance period. From the
set of runs with low bottom friction coefficient, the maxi-
mum amplitude response is observed at Tf = 81 min. Hence,
we estimate the actual Helmholtz resonance period as TH0 =
78 min (with variation from 72.4 to 85.1 min over the tidal
cycle) and use this to obtain the analytical solutions.
[35] Figure 16b demonstrates that the phase difference in

the cove decreases for larger forcing periods (or lower wf).
The frictional dependence changes on either side of the
effective Helmholtz period (just greater than TH0). For TH0 >
Tf (or wH < wf), increasing the friction coefficient results in
lower phase shifts in agreement with the numerical results
from Figure 15. This phase response is analogous to that of
a single degree of freedom damped harmonic oscillator. In
such a system, the two roots of the characteristic equation
correspond to the two sides of the system: the ‘‘low-
frequency side’’ (i.e., here wH > wf) and the ‘‘high-frequency
side’’ (with wH < wf). As damping increases on the low-
frequency side, the phase lag increases positively away from
zero. Whereas on the high-frequency side, the phase lag
moves away (but decreases) from the no-damping value of
180 degrees [e.g., see Thomson, 1971, p. 38]. Conversely,
Figure 16 shows for TH0 < Tf (or wH > wf), use of the larger
friction coefficient results in larger phases shifts. Qualita-

tively the numerical simulations exhibit the same phase
behavior with friction coefficient as the analytical predic-
tions, although there are quantitative differences between
the results.

5.2. Modulation by the Tide

[36] The analytical solutions in Figure 16a show a
bimodal response in amplitude bracketing the effective
Helmholtz frequency. The positions of the two peaks
correspond to the Helmholtz periods at high and low tide.
When the forcing period is outside the range over which
the Helmholtz period varies because of the tide, unsurpris-
ingly the response is much smaller. The bimodality in the
analytically predicted response arises as a result of the
dependence of Helmholtz period on tidal elevation and is
explored further in Figure 17. For Tf < TH, the largest
response is observed at high tide with secondary peaks
at low tide (Figure 17e). The largest amplitude response
occurs when the forcing period corresponds to the Helm-
holtz period at high tide (around 74 min) and these peaks
dominate the tidally averaged value (Figure 17c). Con-
versely for Tf > TH, the largest amplitude response shifts
to low tide with smaller peaks at high tide (Figure 17i)
and the maximum amplitude response occurs when the
forcing period equals the Helmholtz period at low tide
(Figure 17k). Figure 17g demonstrates that when the
forcing period is approximately equal to the effective
Helmholtz period (81 min) the peaks at high and low

Figure 16. Tidally averaged (a) amplitudes and (b) phases of the sea surface elevation inside the cove
(x = L) as a function of the forcing period. The thick, solid, and dashed lines are the analytical
solutions with large, canonical, and small bottom friction coefficients inside the channel and coves,
respectively. The symbols show the corresponding results from the numerical simulations (open circles
show CD = 0.01, asterisks show CD = 0.0023, and multiplication signs show CD = 6.1 � 10�5). The
vertical dashed line at Tf = 78 min shows the location at which Tf = TH0.
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tide are comparable. The corresponding numerical solu-
tions are depicted in Figures 17b, 17d, 17f, 17h, 17j, and
17l. These dimensionless amplitudes over the tidal cycle
were calculated from the spectra of overlapping data
segments of length 2.5 hours. The results also show a
shift in location of the largest peaks from high to low
tide between Figures 17b and 17f. However, the peaks in
Gh0(L) are both much smaller and much broader than in
the analytical solutions. We note that this broadness is
due, in part, to smearing arising from the use of over-
lapping 2.5-hour segments. In addition, at the high and
low points in the tidal cycle, the friction in the analytical
solutions is very small which contributes to the (unreal-
istically) large amplitude responses. Friction is larger in
the numerical solutions at low and high tide, partly owing
to the harmonics of the M2 tidal forcing, which are
generated in the numerical model but are not included
in the analytical model.
[37] Figures 18a, 18c, 18d, 18f, and 18h show the

modulation of relevant quantities over the tidal cycle for
CD = 0.01 based on the analytical solutions. The water

depth outside the channel follows the sinusoidal dependence
illustrated in Figure 18a. The variation of the Helmholtz
period about the base period is plotted in Figure 18c.
Observe that the high (low) tide corresponds to smaller
(larger) Helmholtz periods. The friction term is given in
Figure 18d. The amplitude (Figure 18f) and phase
(Figure 18h) plots are consistent with the behavior predicted
by (28) and (29) and discussed in section 3. There is a
12.4-hour modulation owing to the variation of Helmholtz
period over the tidal cycle and a 6-hour modulation
because of the variation of friction. TH > Tf (or wH < wf)
throughout the tidal cycle and therefore the phase falls
between �90� and �180�. A second example using TH0 =
70 min is also included to illustrate this phase modulation
more clearly and is shown by the thick dashed line (with
tidally averaged values shown by the dotted line). In this
latter case, for the 6-hour period surrounding high tide,
TH < Tf (or wH > wf). Thus, the phase falls between 0� and
�90� as predicted by 28. Conversely for the 6-hour period
surrounding low tide, TH > Tf (or wH < wf) and so the phase
falls between �90� and �180�. The key role played by

Figure 17. Variation of dimensionless amplitudes at x = L over two M2 tidal cycles. (a, c, e, g, i, and k)
Analytical solutions with CD = 0.0023 and TH = 78 min. (b, d, f, h, j, and l) Corresponding numerical
results from the observation point just inside the cove (the fifth closed circle from the right in Figure 11).
Tidally averaged values are indicated by the dashed lines. For reference, Figures 17a and 17b show water
depths and sea surface elevations from the analytical solutions and numerical run (Tf = 74 min),
respectively.
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friction is again apparent with large oscillation amplitudes
occurring in response to the friction term decreasing to its
minimum value at slack tide when the tidal velocities in the
model are lowest. Numerical solutions (Figures 18b, 18e,
18f, 18g, 18h, and 18i) from inside the cove again show
qualitative agreement, but as before the magnitudes are
different. The maximum r-value in the numerical solutions
(Figure 18e) is approximately a factor of 4 smaller than in
the analytical model (Figure 18d). This difference is because
the tidal velocities in the depth-averaged numerical model
are smaller than those used in the analytical solution.
Furthermore, the depth h at the observation point used from
the numerical solutions is slightly less than that used in the
analytical solution, which uses constant h = 5 m. The phase
differences in the cove (relative to the channel entrance) and
dimensionless amplitudes over the tidal cycle were calcu-
lated from the spectra of overlapping data segments of
length 2.5 hours. The 12.4-hour and 6-hour variability
cannot be discerned in the noisier field data (Figure 7),
probably because it is obscured by contributions from the
other tidal constituents.

5.3. Comparison With Field Observations

[38] Finally, the numerical results and analytical predic-
tions for phase and amplitude are compared with the
field observations in Figure 19. At the tidal frequency
(Figures 19a and 19b), the agreement for phase is excellent
everywhere, even though only a single tidal constituent was
used to force the numerical model. At the oscillation
frequency (Figures 19c and 19d), the observations and
numerical results agree well for locations inside the bay
and channel. The analytical predictions follow the same
qualitative pattern, but the gradient of phase shift along the
channel is slightly steeper, which is a consequence of the
theory overpredicting the phase differences (by up to 40� in
some cases). The amplitudes from the analytical results
match well in the channel but the amplitudes in the cove are
larger than those observed (Figure 19e). Possible explan-
ations for this are discussed below. We note that the
observed phases in the cove can be obtained in the theoret-
ical model by using a Helmholtz period of TH0 = 70 min
(dashed line), although this leads to unrealistic oscillation
amplitudes.

Figure 18. Variation of (a) water depth, (b) sea surface elevation, (c) Helmholtz period (unknown in
the numerical simulations), (d and e) friction, (f and g) amplitudes at x = L, and (h and i) phases at x =
L. CD = 0.01, and Tf = 68 min. Results from the analytical solution over two M2 tidal cycles are
shown (Figures 18a, 18c, 18d, 18f, and 18h). The corresponding numerical results from the observation
point just inside the cove are shown as well (Figures 18b, 18e, 18g, and 18i). Tidally averaged values
are shown by the dashed line. An additional example of phase modulation with TH0 = 70 min is shown
by the dot-dash line in Figure 18h with the dotted line indicating the tidally averaged value.
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5.4. Discussion

[39] The analytical model uses a greatly simplified
geometry, assuming uniform depth everywhere in the chan-
nel and cove, and is one-dimensional and linear. However,
despite its highly idealized nature the model appears to
qualitatively capture the flow behavior seen in the numerical
model. In particular, the model correctly predicts the de-
pendence of the phase shift along the channel on bottom
friction coefficient. It captures the modulation of phase and
amplitude throughout the tidal cycle and the variation of
these quantities along the channel. There are however, some
quantitative discrepancies between the analytical model
results and both the numerical results and field observations.
The phase differences (relative to the channel entrance) are
overpredicted (by up to 40� in some locations). The ampli-
tudes of oscillations match reasonably well with observed
tidally averaged values 75% of those predicted (Figure 19).
[40] The lack of lateral friction in the analytical model

appears not to contribute significantly to the discrepancies
in phase. Indeed, changing the horizontal eddy viscosity in
the channel and coves by a factor of 10 in the numerical
simulations results in less than 1� changes in phase within
the cove. We suggest that the lack of nonlinear effects most
likely contributes to some part of the phase discrepancies.
The simplified geometry in the analytical model is also

expected to play a role. The numerical results lend support
to these hypotheses as the simulations represent the geom-
etry accurately and include nonlinear effects and the results
match the observations well.

6. Conclusions

[41] Observations have been presented showing a double
resonance. The first, an oscillation in sea surface elevation
and flow velocity with a period of around 1 hour, has an
energy distribution, which was shown to be consistent with
a quarter-wave resonance of the bay. Moreover, the occur-
rence of large amplitude events of sea level variance in the
1-hour band in Lunenburg Bay are shown to be often
coherent with similar sea level variance events at other
locations. The peak of the quarter-wave resonance is broad-
banded and sufficiently close in frequency to the Helmholtz
frequency of a connected cove to excite a Helmholtz
resonance in the cove. The interaction between the two
resonances leads to a strong modulation of the tidal currents
in the connecting channel. An analytical model of the
interaction shows that the �1-hour motion in the channel
is a standing wave and gives good qualitative and reason-
able quantitative agreement with results from a numerical
model and the field data. The quantitative differences are

Figure 19. (a and b) Tidally averaged phase differences (relative to the channel entrance) at the tidal
(M2) frequency band. (c and d) Phase differences and (e and f) dimensionless amplitudes at the
oscillation frequency. Positions in the channel and coves are shown (Figures 19a, 19c, and 19e). Positions
in the bay are also shown (Figures 19b, 19d, and 19f). Numerical results (squares), field data (closed
circles, open circles, and closed triangles), and analytical solutions using TH0 = 78 min (solid line) and
TH0 = 70 min (dashed line). In all solutions, Tf = 68 min and CD = 0.01. The inset in Figure 19b shows the
results from Upper South Cove (instrument 1 (Figure 2)).
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attributed in part to lack of nonlinear effects and the
simplified geometry in the analytical model. As far as we
are aware, this is the first model exploring the phase
response of a Helmholtz oscillation to varying friction
coefficients. While the results presented here are specific
to the geometry of Lunenburg Bay, tidal channels connect-
ing bays and coves are common features of the coastal
environment, and one expects that similar flow dynamics
exist elsewhere.
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