Intraseasonal Case Studies of the Annular Mode

Robert X. Black Brent A. McDaniel

School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, Georgia

Comments Appreciated!!

We are also interested in pursuing parallel diagnoses of model simulations of annular mode behavior (mechanistic or otherwise).

Feel free to contact me at rob.black@eas.gatech.edu

Outline

Preliminaries

- Mechanisms & diagnostic formalism
- PV analyses of the Northern Annular Mode
- Initial tangent: Recent climate variability
- Case Studies (NCEP/NCAR reanalyses)
 - Motivation and case selection
 - Downward protruding event
 - Stratosphere restricted event

Introduction

Downward Stratospheric Influences?

- Indirect influence via stratospheric modulation of tropospheric wave propagation (Shindell et al. 1999, Hartmann et al. 2000)
- Direct downward influence associated with adjustment to balance (Haynes et al. 1991, Ambaum and Hoskins 2002, Black 2002)
- Vertical Rossby wave reflection (Perlwitz and Harnik 2003)

Direct Downward Forcing?

- There is a well-recognized dynamical interplay between large-scale waves in the upper and lower troposphere
- The impact of upper tropospheric waves upon surface waves has been diagnosed using potential vorticity inversion methods (e.g., Hoskins et al. 1985, Black and Dole 1993)
- We use potential vorticity inversion methods to study direct downward forcing associated with stratospheric PV anomalies

PV Balance Condition:

Large-scale atmospheric disturbances (waves) are governed by the *linear* balance condition:

$$q' = \frac{g}{f} \left\{ \frac{1}{\left(a\cos\phi\right)^2} \frac{\partial^2}{\partial\lambda^2} + \frac{f}{a^2\cos\phi} \frac{\partial}{\partial\phi} \left(\frac{\cos\phi}{f} \frac{\partial}{\partial\phi}\right) + f^2 \frac{\partial}{\partial p} \left(\frac{1}{\sigma} \frac{\partial}{\partial p}\right) \right\} Z'$$
$$= \langle (Z')$$

$$\Rightarrow Z' = \langle {}^{-1}(q') \rangle$$

\triangleright Poisson-like => nonlocal response in Z'

Diagnostic Methods

[variation of Black 2002]

Horizontal PV Balance: Wind anomalies (at constant pressure):

Diagnostic Methods

PV 'Charge' Distribution

Poisson-like PV balance condition indicates nonlocal effects analogous to induction of electric field by localized charges

Spheroids of constant Z' associated with isolated q anomalies

Vertical extent related to L/N; Large scales & weak N favor a downward influence

Diagnostic Methods

[e.g., Hoskins et al. 1985]

Piecewise PV Inversion: Mechanics

Boundary Conditions

- Polar Continuity
- Longitudinally cyclic
- \succ Z' = 0 at low latitude boundary (5⁰N)
- Upper and lower boundaries:
 - a) Boundary q' not included:
 - b) If boundary q is included:

$$\frac{\partial Z'}{\partial p} = 0$$
$$\frac{\partial Z'}{\partial p} = -\frac{R\theta'}{gp} \left(\frac{p}{p_o}\right)^{R/C_p}$$

Diagnostic Methods

[Black 2002]

Time Averaged NAM Structure (winter)

East-West Wind Anomalies (*u*')

PV Anomalies (q')

Time Averaged NAM Structure

[Black 2002]

PV Inversion Results: East-West Winds (u')

Invert Stratospheric PV Anoms

Invert Tropospheric PV Anoms

Time Averaged NAM Structure

[Black 2002]

Nonlocalness of Upper Troposphere U

Invert All PV Anoms

Invert 500-300 hPa PV

Time Averaged NAM Structure

Importance of Lowermost Stratosphere

Invert Stratospheric PV Anoms

Invert PV Anoms > 100 mb

Time Averaged NAM Structure

U anomalies (Post-Pinatubo - Total) 10 -2 20 30 50 (hPa) -2 8 70 -3 ssure 100 -4 -6 150 ፈ 200 250 4 4 300 400 -3 500 600 700 800 1000 ^{40N} Latitude ^{60N} 2ÓN 3ÖN 8ÓN 9ÓN 70N

-2

<= JFM trend (1968-97) (Thompson et al. 2000)

> QBO composite (Jan) => (Thompson et al. 2002)

Recent NH Winter Climate Variability:

> Zonal mean zonal wind anomalies

<= Post-Pinatubo composite (Stenchikov et al. 2000)

> Solar cycle regression => (QBO East - January)

QBO composite (Jan) => (Thompson et al. 2002)

Recent NH Winter Climate Variability:

Zonal mean PV anomalies

<= Post-Pinatubo composite (Stenchikov et al. 2000)

> Solar cycle regression => (QBO East - January)

-2 20 30 50 (hPa) -2 8 70 **e** 100 -6-150 a 200 -4 250 300 400 500 600 700 800 1000 2ÓN 3ÖN ^{40N} Latitude ^{60N} 9ÓN 70N 80N

-2

<= JFM trend (1968-97) (Thompson et al. 2000)

> QBO composite (Jan) => (Thompson et al. 2002)

Recent NH Winter Climate Variability:

Zonal winds induced by stratospheric PV anoms

<= Post-Pinatubo composite (Stenchikov et al. 2000)

> Solar cycle regression => (QBO East - January)

Case Studies of the NAM

Some stratospheric events penetrate into the troposphere and some don't. Why?

- •NCEP/NCAR daily data
- •Deviations from seasonal trend
- •Running 5-day average

90 Day LP Filter [Baldwin and Dunkerton 1999]

Case studies of NAM onset

Case 1: 2/2/76 – 2/22/76

Case 4: 2/26/89 – 3/18/89

Case 1: Zonal wind evolution

Case 1: Developmental Changes

Zonal Wind

Potential Vorticity

Case 1: Induced zonal wind changes

Stratospheric PV Anoms

Tropospheric PV Anoms

Case 1: Anomalous TEM Forcing

Wave Driving & EP Flux

TEM Coriolis Acceleration

Case 1: Zonal wind changes

Observed

Net TEM forcing

Case 4: Zonal wind evolution

Case 4: Developmental Changes

Zonal Wind

Potential Vorticity

Case 4: Induced zonal wind changes

Total

Stratospheric PV Anoms

Case 4: Anomalous TEM Forcing

Wave Driving & EP Flux

Net TEM Forcing

Case 4: PV evolution

Summary

- PV Anomalies in lowermost stratosphere (250-100 hPa) exert a downward influence
- This effect appears to be acting in recent climate variability
- Wave driving acts to initiate stratospheric changes implying a return feedback
- Pre-existing tropospheric PV anomaly features can mask the stratospheric influence in individual cases