

"Do plausible perturbations to the stratosphere influence the troposphere? The null hypothesis is that they do not." Long-term and Short-term Strat-Trop Coupling: Lessons from a Simple AGCM

Paul J. Kushner

NOAA/GFDL

Lorenzo M. Polvani

Dept of Applied Physics and Applied Mathematics Columbia University in the City of New York

Outline

- Introduction
- Response to stratospheric cooling:
 - Equilibrated response
 - Adjustment to equilibrium
 - ➢ Response in presence of seasonal cycle
- Strat-to-Trop (Baldwin-Dunkerton) Signals
- Conclusion

➤ Further details

- Polvani & Kushner, GRL, 2002;
- Kushner & Polvani, J. Clim. submitted

Introduction

- We need simplified settings to understand stratospheric influences on tropospheric climate and weather
- Our idea:
 - > Set up a simple stratosphere-troposphere model
 - Give the stratosphere a thermal kick ... see what happens in the troposphere
 - > The stratospheric influence here is unambiguous
- Aim for *clean* results:
 - ➢ Robust
 - > Reproducible
 - ➤ (Hopefully) Explicable

Polvani-Kushner Model

- Dry primitive-equation model
- Very simple "physics:"
 - > Newtonian cooling to reference T_{eq} profile
 - Rayleigh drag in PBL and in sponge
- Zonally symmetric forcing and boundary conditions (a la Scinocca and Haynes)

> No stationary wave forcing of the stratosphere

> A representation of the Southern Hemisphere

 Details in P & K 2002 GRL, results reproduced independently by R. Scott

Controlling Field: T_{eq}

• Stratosphere:

- Transition from winter polar vortex to summer stratosphere
- Single parameter, g
 controls stratospheric
 winter polar temp
- Troposphere:
 - Held & Suarez

Equilibrated Response

- First, we look at long-term mean response to a change in $\rm T_{\rm eq}$

Imposed cooling in winter stratosphere

Equilibrated Response

 Since γ controls the polar winter temperature, it also controls the strength of the stratospheric polar vortex ...

Polar vortex strengthensTrop jet shifts polewards dramatically

The Trop Change: a Classical AM Response

Trop response projects entirely onto internal variability
A positive & stratospherically forced annular mode response, a la Thompson & Solomon 2002

Robustness of Response to Resolution

Recap

- "Do plausible perturbations ... ?"
 ≻ Yes!
- We have a robust, easily reproducible example of stratospheric influence.

Gets the sense of the observed SH annular mode trends, presumably forced by photochemical ozone loss (T&S2002)

- But how to explain it?
- We examine the change to the eddy forcing...

EP Flux Budget for Two Boxes

→ EP flux through bdry

) Net EP flux convergence

- As stratosphere cooled:
 - 1. Eddy drag in both boxes reduced.
 - 2. High-lat box: enhanced equatorward deflection
 - 3. Low-Lat box: reduced upward flux

Response of Upward EP Flux into Strat

Biggest reduction at synoptic scales

All very well, but ...

- What do these changes in the EP flux actually explain about the changes to the mean state?
- Which is cause, which is effect?
 - Is the vortex stronger because it absorbs less upward propagating wave activity?
 - Or, is there less upward propagating wave activity because the vortex is less absorbing?
- The EP flux diagnostics do not provide independent insight into the workings of the tropospheric response.
- So, we pursue an even simpler model ...

Zonally Symmetric Model Experiments

- We perform a "downward control" (TEM circulation) calculation
- To do so, we use a zonally symmetric version of the model.
 - We use this to see how changes to the eddy driving impact the circulation in the absence of eddy feedbacks

Zonally Symmetric Model Experiments

- -33 -45 -51 -57 -63 -69 -75 -81 -87 -93 1000 1000 1000 -60 -90 -30 0 -90 -60 -30 0 -90 -60 -30 0 latitude latitude latitude
- The response penetrates into upper trop, but trop jet does not shift.

Zonally Symmetric Model Experiments

• Next, we put in the changes to the EP fluxes from $\gamma=2$ to $\gamma=4$ for p > 100 mb ...

 The response extends into the troposphere, as expected from Haynes et al. 1991, and partially cancels response from strat.

Response of the Eddy Driving

- Zonally symmetric model:
 - The change to the stratospheric eddy forcing does penetrate into the troposphere.
- But tropospheric eddy feedbacks are involved in bringing the response to the surface.
- There is strong coupling through the lower stratosphere
 - Large change to synoptic-scale eddy driving
 - Eddy forcing changes can change winds both up and down (as Alan said yesterday)

Timescales of Adjustment

- We now use our model to look at the tropospheric *adjustment* to stratospheric perturbations
- This is the kind of experiment that Peter Haynes was proposing yesterday

Timescales of Adjustment

- Ensemble of 10 γ = 4 integrations
- Each realization branches from g = 2 control run every 1,000 days
- Thus, each realization is a switch-on cooling experiment

Timescales of Adjustment

One realization ...

Timescales of the Transient Adjustment

- stratosphere adjusts very rapidly O(50 days)
- troposphere adjusts more slowly O(200 days)

Timescales of the Transient Adjustment

- Δ: measure of ensemble- mean extratropical wind difference from U(γ=2)
- $\Delta \rightarrow 1$ as $U \rightarrow U(\gamma=4)$

Timescales of the Transient Adjustment

- Initially, signal propagates from 1 to 100 mb in roughly 150 days → 0.23 km/day
- Dickinson (1968), Haynes et al. (1991) predicts

$$\rightarrow C \sim k_T H$$

~ 0.2 km/day

 Then, a longer adjustment timescale of 300-700 days

Transient Adjustment: Conclusions

- To describe the tropospheric response, we propose a 2step adjustment:
- An initial stratosphere-driven & linear adjustment (t<200d)
 - Linear means that the response is state independent and can be modeled by the Haynes et al. 1991 methods.
- 2. A coupled strat-trop nonlinear adjustment with synoptic eddy feedbacks (200d<t<800d).

• Thus, the stratosphere "tickles" the troposphere, and the tropospheric baroclinic eddy circulation responds, unpredictably and strongly, over a longer time scale

Response in Presence of Seasonal Cycle

- If adjustment to equilibrium is too slow, will the seasonal cycle wipe out the tropospheric response?
- We will answer this question in stages.
- First, we impose a seasonal cycle in the stratosphere only

Seasonal Cycle of $T_{eq}(\gamma=2)$, 10mb

Seasonal Cycle of U(γ =2), 10mb

(20-year climatology)

Seasonal Cycle of U(γ =2), 500mb

Steady Forcing Case...

Extratropical $\delta U_{trop}/\delta U_{strat} \sim 0.25$

Representative Seasonal Cycle Case

•Strat + trop response weaker, even for γ =6

•Extratropical $\delta U_{trop}/\delta U_{strat} \sim 0.25$

Seasonal Cycle: Conclusions

- The tropospheric response is also robust to the seasonal cycle.
- This occurs despite the slow adjustment timescale from the transient experiments.

Strat-to-Trop Signals

- T&S2002 discuss the connection between the strat/trop short-term (10-100 day) variability and its long-term response to ozone depletion.
- General idea: stronger polar vortex linked to
 Less wave drag in strat
 Less strat variability (fewer sudden warmings)
 Weaker strat-trop coupling
 Fewer or weaker Baldwin-Dunkerton events

Strat-to-Trop Signals

- How about our model?
- We have already seen that there is less wave drag in strat for the strong vortex case
- We examine impact of strat cooling on variability within model

Baldwin & Dunkerton construction

- Events propagate relatively slowly (as in externally forced response)
- Relatively few
 penetrate into trop

Baldwin & Dunkerton construction

g=2

g=4

Strat-to-Trop Signals: Conclusions

- Downward propagating strat-to-trop AM signals do not change for strong vortex case
- Nevertheless, our model's troposphere responds strongly to stratospheric thermal perturbations
- We thus have an example for which these signals may not be relevant to long-term response to externally imposed perturbations

Conclusion

- We have a clean (robust & reproducible) example of stratospheric influence.
- But the dynamics of the change are tricky
 - Because they involve a long timescale adjustment with the tropospheric circulation
 - Because synoptic-eddy details may be important
 - Because the eddy driving influences extend up and down
- "Downward-control" linear models may help.
- Downward-propagating AM signals may not.