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Introduction

• We need simplified settings to understand 
stratospheric influences on tropospheric climate and 
weather

• Our idea:
Ø Set up a simple stratosphere-troposphere model

Ø Give the stratosphere a thermal kick … see what happens in 
the troposphere

Ø The stratospheric influence here is unambiguous

• Aim for clean results:
Ø Robust

Ø Reproducible

Ø (Hopefully) Explicable



Polvani-Kushner Model

• Dry primitive-equation model

• Very simple “physics:”
Ø Newtonian cooling to reference Teq profile

Ø Rayleigh drag in PBL and in sponge

• Zonally symmetric forcing and boundary conditions (a 
la Scinocca and Haynes)
Ø No stationary wave forcing of the stratosphere

Ø A representation of the Southern Hemisphere

• Details in P & K 2002 GRL, results reproduced 
independently by R. Scott



Controlling Field: Teq

• Stratosphere:
Ø Transition from winter 

polar vortex to 
summer stratosphere

Ø Single parameter, γ,
controls stratospheric 
winter polar temp

• Troposphere:
Ø Held & Suarez



• First, we look at long-term mean response to 
a change in Teq

Equilibrated Response



Teq

γ = 2 γ = 4

Imposed cooling in winter stratosphere



• Since γ controls the polar winter temperature, 
it also controls the strength of the 
stratospheric polar vortex …

Equilibrated Response



U

γ = 2 γ = 4

•Polar vortex strengthens
•Trop jet shifts polewards dramatically



The Trop Change: a Classical AM Response

U Response AM Residual

•Trop response projects entirely onto internal variability
•A positive & stratospherically forced annular mode 
response, a la Thompson & Solomon 2002



Robustness of Response to Resolution

Latitude of  Surface Wind Max vs γ

colder strat → colder strat →

20 levels

40 levels

80 levels



Recap

• “Do plausible perturbations … ?”
ØYes!

• We have a robust, easily reproducible 
example of stratospheric influence.
ØGets the sense of the observed SH annular mode 

trends, presumably forced by photochemical 
ozone loss (T&S2002)

• But how to explain it?
• We examine the change to the eddy forcing…



EP Flux Budget for Two Boxes

“High-Lat” 
box: 

budget for 
the polar 
vortex

“Low-Lat” 
box: 

detect 
changes in 
synoptic 
waves



EP Flux Budget
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EP Flux Budget

6.0 3.6

10.2

9.3 6.5

8.58.9 3.7

0.6
0.1

0.6
0.2

4.6
3.5

1.7
2.7

40S90S 20S

100 mb

1 mb

“High-Lat” 
box

“Low-Lat” 
box

EP flux through bdry

Net EP flux convergence



EP Flux Budget
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EP Flux Budget

• As stratosphere cooled:
1. Eddy drag in both boxes reduced.
2. High-lat box: enhanced equatorward

deflection
3. Low-Lat box: reduced upward flux
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Response of Upward EP Flux into Strat

γ = 2 γ = 4

)()( 100mbpF

Biggest reduction at synoptic scales



All very well, but …

• What do these changes in the EP flux actually 
explain about the changes to the mean state?

• Which is cause, which is effect?
Ø Is the vortex stronger because it absorbs less 

upward propagating wave activity?
ØOr, is there less upward propagating wave activity 

because the vortex is less absorbing?

• The EP flux diagnostics do not provide 
independent insight into the workings of the 
tropospheric response.

• So, we pursue an even simpler model …



Zonally Symmetric Model Experiments

• We perform a “downward control” (TEM 
circulation) calculation

• To do so, we use a zonally symmetric version 
of the model.
ØWe use this to see how changes to the eddy 

driving impact the circulation in the absence of 
eddy feedbacks



Zonally Symmetric Model Experiments

• First, we put in the changes to the EP fluxes from 
γ=2 to γ=4 for p < 100 mb …

• The response penetrates into upper trop, but trop jet 
does not shift.

∆(EPFD)



Zonally Symmetric Model Experiments

• Next, we put in the changes to the EP fluxes from 
γ=2 to γ=4 for p > 100 mb …

• The response extends into the troposphere, as 
expected from Haynes et al. 1991, and partially 
cancels response from strat.

∆(EPFD)



• Zonally symmetric model:
ØThe change to the stratospheric eddy forcing does 

penetrate into the troposphere.

• But tropospheric eddy feedbacks are involved 
in bringing the response to the surface.

• There is strong coupling through the lower 
stratosphere
ØLarge change to synoptic-scale eddy driving
ØEddy forcing changes can change winds both up 

and down (as Alan said yesterday)

Response of the Eddy Driving



Timescales of Adjustment

• We now use our model to look at the 
tropospheric adjustment to stratospheric 
perturbations

• This is the kind of experiment that Peter 
Haynes was proposing yesterday



Timescales of Adjustment

• Ensemble of 10 γ = 4 integrations
• Each realization branches from γ = 2 control 

run every 1,000 days
• Thus, each realization is a switch-on cooling 

experiment
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Timescales of Adjustment

Difference of U from γ=2 Case

5 mb

500 mb

One realization …



Timescales of the Transient Adjustment

• stratosphere adjusts very rapidly O(50 days)
• troposphere adjusts more slowly O(200 days)



Timescales of the Transient Adjustment

∆ • ∆: measure of 
ensemble- mean
extratropical wind 
difference from 
U(γ=2)

• ∆→1 as U→U(γ=4)



• Initially, signal 
propagates from 1 to 
100 mb
in roughly 150 days
→ 0.23 km/day

• Dickinson (1968), 
Haynes et al. (1991) 
predicts
 → c ∼ kTH

~ 0.2 km/day

• Then, a longer 
adjustment timescale 
of 300-700 days

Timescales of the Transient Adjustment

∆



• To describe the tropospheric response, we propose a 2-
step adjustment:

1. An initial stratosphere-driven & linear adjustment 
(t<200d)
Ø Linear means that the response is state independent and can be 

modeled by the Haynes et al. 1991 methods.

2. A coupled strat-trop nonlinear adjustment with synoptic 
eddy feedbacks (200d<t<800d).

Transient Adjustment: Conclusions



Transient Adjustment: Conclusions

• Thus, the stratosphere “tickles” the troposphere, and 
the tropospheric baroclinic eddy circulation responds, 
unpredictably and strongly, over a longer time scale



Response in Presence of Seasonal Cycle

• If adjustment to equilibrium is too slow, will 
the seasonal cycle wipe out the tropospheric 
response?

• We will answer this question in stages.
• First, we impose a seasonal cycle in the 

stratosphere only



Seasonal Cycle of Teq(γ=2), 10mb



Seasonal Cycle of U(γ=2), 10mb

(20-year climatology)

Westerlies 
weaker than 

steady-
forced case



Seasonal Cycle of U(γ=2), 500mb

(20-year climatology)

Very weak 
seasonal 

cycle in trop



Steady Forcing Case…

Extratropical δUtrop/δUstrat∼0.25



Representative Seasonal Cycle Case

•Strat + trop response weaker, even for γ=6

•Extratropical δUtrop/δUstrat∼0.25

(Combined NH + SH 20-year annual mean)



Seasonal Cycle: Conclusions

• The tropospheric response is also robust to the 
seasonal cycle.

• This occurs despite the slow adjustment timescale 
from the transient experiments.



Strat-to-Trop Signals

• T&S2002 discuss the connection between the 
strat/trop short-term (10-100 day) variability 
and its long-term response to ozone 
depletion.

• General idea: stronger polar vortex linked to
ØLess wave drag in strat
ØLess strat variability (fewer sudden warmings)
ØWeaker strat-trop coupling
ØFewer or weaker Baldwin-Dunkerton events



Strat-to-Trop Signals

• How about our model? 
• We have already seen that there is less wave 

drag in strat for the strong vortex case
• We examine impact of strat cooling on 

variability within model



γ = 2

Baldwin & Dunkerton construction

• Events propagate 
relatively slowly (as 
in externally forced 
response)

• Relatively few 
penetrate into trop



Baldwin & Dunkerton construction

γ = 2 γ = 4



Strat-to-Trop Signals: Conclusions

• Downward propagating strat-to-trop AM 
signals do not change for strong vortex case

• Nevertheless, our model’s troposphere 
responds strongly to stratospheric thermal 
perturbations

• We thus have an example for which these 
signals may not be relevant to long-term 
response to externally imposed perturbations



Conclusion

• We have a clean (robust & reproducible) 
example of stratospheric influence.

• But the dynamics of the change are tricky
ØBecause they involve a long timescale adjustment 

with the tropospheric circulation
ØBecause synoptic-eddy details may be important
ØBecause the eddy driving influences extend up 

and down

• “Downward-control” linear models may help.
• Downward-propagating AM signals may not.


