How does the stratosphere influence the troposphere in mechanistic GCMs?

Walt Robinson Department of Atmospheric Sciences University of Illinois at Urbana-Champaign

Acknowledgments: Dr. Yucheng Song, Climate Prediction Center; NSF Climate Dynamics Program

outline

introduction

- Boville's experiment
- a possible mechanism
- idealized models
- the 3 experiments
- comparing results
- tests of mechanisms
- summary and remaining questions

Boville's experiment

possible mechanism

given a change in the wave driving of the polar vortex:

- downward control* provides weak vortex-scale forcing in the troposphere
- tropospheric eddies reinforce response at tropospheric annular-mode scale

the "downward control with eddy feedback" (DCWEF) hypothesis

*Haynes *et al.*, 1991

Observed AO in [u] and planetary wave driving

synoptic-eddy feedback reinforces AO in obs

NH data, DJFM : 8-30 day lag of annular mode (PC1 of [u])

Lorenz & Hartmann, 2003, JAS

stimulating the AO from "above" in a simple model

Robinson, 1991, *Tellus*

response of two-level model to "polar-vortexlike" forcing.

- forced Control
- 1500 day runs
- 2-level R15 truncation
- zonally homogeneous

nice simple story, but is it right?

• DCWEF implies:

- stratosphere communicates with troposphere primarily through MMC (m=0)
- tropospheric response should scale with net change in stratospheric wave driving
- tropospheric response strongest when it projects on tropospheric internal modes of variability
 - which are sustained by eddy feedback

idealized GCM studies

- Controlled forcing
 - compared with global warming/O₃ depletion experiments
- Simplified "radiation"

$$\frac{dT}{dt} = \frac{1}{t} \left(T_{eq} - T \right)$$

- Controlled dynamical context
 - forced planetary waves present/absent
- Sufficient dynamical complexity

- introduction
- the 3 experiments
 - Polvani & Kushner
 - Taguchi
 - Song & Robinson
- comparing results
- tests of mechanisms
- summary and remaining questions

3 sets of experiments

- Polvani & Kushner (2002, GRL; 2003, J Clim)
 change T_{eq}
- Taguchi (2003, JAS)
 - change *t*
 - with and without topography
- Song & Robinson (2003, JAS in preparation)
 - direct forcing of stratospheric zonal momentum

Polvani & Kushner

T 42 L40

- introduction
- the 3 experiments
- comparing results
- tests of mechanisms
- summary and remaining questions

comparison

- Tropospheric response present in all 3 cases
- Strongest in PK weakest in T
 - measured by ? u_{trop}/? u_{strat}
- Banded response in troposphere
 - projects on leading mode of tropospheric variability
- Similar nonlinearity in PK & SR

dynamics

- Tropospheric eddy forcing is proximate source of tropospheric response
 - as for internal variability

- introduction
- the 3 experiments
- comparing results
- tests of mechanisms (test DCWEF in SR model)
 - which waves where?
 - how does the signal get into the troposphere?
- summary and remaining questions

mechanism

• Tropospheric response is weakened when longwave response is weakened or suppressed....

mechanism (cont'd)

....but strengthened when long-wave response is strong

wave 3

201

30N

35N

40N

45N

505

70N

75N

BON

85N

90N

• wave 3 dominates long-wave forcing in high latitude upper troposphere

wave 3 wave driving - forced

wave 3 (cont'd)

- Change in wave 3 structure
 - composited with ridge rotated to 0° long. at 68 N, σ =.15

how does DCWEF fare?

- Supported by:
 - robust tropospheric response (PK & SR)
 - projection on tropospheric mode (PK, Ta, SR)
- *Not* supported by:
 - sensitivity of tropospheric response to stratospheric manipulations (SR)
 - which do not degrade tropospheric internal modes
- Ambiguous:
 - nonlinearity of response in PK & SR

a messier mechanism

- Increased strat. [u] confines long baroclinic waves to troposphere in high latitudes
 - stronger long-wave baroclinic instability
 - stronger response to nonlinear forcing
- Increased wave driving from long waves slows upper tropo. [u] in high latitudes
- Tropospheric response reinforced in lower latitudes by synoptic-eddy feedback (as in DCWEF)
- Tanaka & Tokinaga (2002, JAS)
 - but T&T expect *increased* high-latitude [u] from
 stronger baroclinic instability

MM hypothesis

- Does not rule out direct influence on troposphere by downward control
- But influence on lower stratospheric shear is more important
- Changes in stratospheric wave driving in PK-type experiments may *not* be essential for the tropospheric response
 - since radiative equilibrium profile has increased vertical shear in the lower stratosphere

• introduction

- the 3 experiments
- comparing results
- tests of mechanisms
- summary and remaining questions

summary

- Stratospheric changes induce robust tropospheric responses by stimulating changes in tropospheric eddy driving
 - Projects on internal mode of tropospheric variability
 - Taguchi's weak tropospheric response forcing nearly orthogonal to leading mode (?)
- How does signal get into troposphere?
 - "Downward control" -
 - cannot explain nonlinearity or sensitivity to stratospheric mean flow/longwave damping
 - changes that do not affect structure of tropospheric leading mode
 - Through influence on high-latitude long (baroclinic?) waves
 - more complicated, but consistent with SR results

questions

- Long waves respond to zonal wind changes at what levels?
 - importance of wave 3 points to lower stratosphere
 - Perlwitz & Harnik (2003, J Clim) point higher
- How do mechanisms change in presence of strong planetary waves?
- How general are these results?
 - unpleasantly similar to extra-tropical SST problem

