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Pinatubo
June 12, 1991

Three days
before major
eruption of
June 15, 1991
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After Pinatubo, Cubi Point Naval Air
Station, 40 km from volcano
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AVHRR uerosol optical depth (A = 0 63 um), Jéun 1990
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Global Avg. Lower Stratospheric Temp. Anomalies
with respect to 1984—1990 mean
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\\
Winter (DJF) 1991-92

Average Lower Troposphere Temperature Anomalies (°C)
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Winter (DJF) 1992-93

Average Lower Troposphere Temperature Anomalies (°C)

Satellite data courtesy of John Christy, University of Alabama, Huntsville
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Winter (DJF) 1982-83

Average Lower Troposphere Temperature Anomalies (°C)
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Tree ring analysis \\
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Groisman (1992),
repeating previous
Russian studies,
found winter warming
when averaging over
2-3 years following
largest eruptions of
the past two
centuries.

Dots are stations.

Winter temperature anomaly (K)
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Kraokatou 1883-84 Tarawera 1BBE-87 Bandai 1889-90

Winter Warming for
largest eruptions of the
past 120 years

Ksudach 1908-03 Katmai 191314

Observed surface air
temperature anomalies

Quizapu 1933-34 Bezymiaonny 1957-58 Agung 1963-64

Robock and Mao (1992)
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The Arctic Oscillation signature in the wintertime geopotential

height and temperature fields (Fig. 1 maps)

David W. J. Thompson and John, M. Wallace
Creopbrypsical Regearch Letters, Moy I, 1005

Trapopauss height (W)

The Arctic
Oscillation '

Thompson and
Wallace (1998)

Stronger polar vortex

Winter warming —

Positive mode is the
same as the response
to volcanic aerosols.

Alan Robock . . Figure 1. Regression maps for g=opotential height (meters), tropopause pressure (Pa), 1000-300-
Department of Environmental Sciences hFPathickness (m), SLP (expressed a5 Zypeg: w0 and surface air temperature (SAT- &) anomaliss
as mdizated, based upon the AQ indax for 1947-1087, See text for details,



How can volcanic eruptions affect the AO?

* Changes in the stratosphere:

Aerosol tropical warming

Ozone polar cooling
Both the above produce a stronger polar vortex
QBO produces strong modulation of response

* Changes in the troposphere:

Land cooling in subtropics and warming at higher latitudes
Weaker planetary waves
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“stratospheric gradient” mechanism . .
Ways Volcanic Eruptions

Force Positive AO Mode

“tropospheric gradient” mechanism
“"wave feedback” mechanism
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= Lower Stratospheric Temp. Anomalies — Latitude Bands
with respect to 1984—1990 mean
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General Circulation Model (6GCM) experiments
GCMs Used

1. MPT ECHAM-2, T21L19, perpetual January

off-line radiation (from El Chichon)
Average of 58 Januaries for control and forced

2. MPT ECHAM-4, T42L19

Ensembles of five 2-year runs for control and forced

3. GFDL SKYHI, 3°x3.6° (lat-lon) L40

Ensembles of four, six, eight, or 24 2-year runs for forced
and long control runs
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SKYHI Experiments

Ensembles of 2-year runs with specified climatological SST:

o Aerosols with stratospheric and surface forcing (A)
- 8 ensemble members

e Aerosols with only surface Cooling (no stratospheric heating) (C)
- 4 ensemble members

e Observed Ozone anomalies only (O)
- 6 ensemble members

e Aerosols + QBO with stratospheric and surface forcing (AQ)
- 24 ensemble members
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Stratospheric Aerosol Distribution
Aerosol Optical Depth (A=0.55 p.m)
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SKYHI simulations

Zonal mean
temperature
anomaly (K)
at 50 mb
caused by
aerosols only (A)

Hatching shows
90% significance

NCEP observations
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QBO forcing

(oY
UQBO(p,(I),f): U i % € (130)

Uging - Smoothed deseasonalized monthly-mean Singapore zonal wind

O - /atitude, p - pressure, t(p,0) - characteristic time
T(p,0) > Sday for 0.0I1mb <p <100 mb

<U> - zonal mean zonal wind

U.... - climatological mean of zonal mean zonal wind
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SKYHTI simulation
Zonal mean zonal wind
(m/s) from 11-year
QBO control run

Observed zonal mean
zonal wind (m/s) at
Singapore
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Pressure (hPa)

Pressure (hPa)

a) Calculated equatorial zonal wind (m/s)
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SKYHI
simulations

Zonal mean AT ( K) at 50 hPa, gbo—climgbo
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) ensemble (AQ—climgbo) at 50 hPa

SKYHI simulations

Zonal mean
temperature
anomaly (K)
at 50 mb
caused by
aerosols and QBO (AQ)

Hatching shows
90% significance

NCEP observations
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Geopotential height anomaly (m), NCEP reanalysis

a) DJF 91/92, 50 hPa level c) DJF 917982, 500 hPq level

Winter 91/92

NCEP Observations

Geopotential height anomaly (m)
with I"CSPZCT to 1985-1990 mean b) DJF 92/93, 50 hPa level d) DJF 92,/93, 500 hPa level
at 50 mb and 500 mb
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significance
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Geopotential height anomaly ensemble (A) avr

SKYHT simulations

of geopotential height
anomaly (m) at 50 hpa
and 500 hPa caused by
aerosols only (A)

Winter 91/92

Hatching shows
90%significance

Winter 92/93
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Geopotential height anomaly (m) average over ensemble (AQ)
al DJF 91/92, 50 hPa level <) DUF 91/92, 500 hPa level

SKYHTI simulations

of geopotential height
anomaly (m) at 50 hpa
and 500 hPa caused by
aerosols and QBO (AQ)

Winter of 91/92
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Zonal mean ozone
anomalies (ug/g)
as calculated using
ozonesonde

Data provided
by Jim Angell
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Zonal Mean Ozone Anomaly (ng/q)
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SKYHI simulations
of geopotential height
anomaly (m) at 50 hPa
and 500 hPa caused by

ozone only (O)

February-April 1992

Hatching shows
90% significance

February-April 1993
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Geopotential height anomaly (m) averaged over ensemble (0)
a) FMA 92, 50 hPa level ¢) FMA 92, 500 hPa level
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Ensemble (C), DJF of 1991/92 and 1992/93
a) AT at 50 hPa

—
-

Zonal mean anomalies from
ensemble (C) for the winters
(DJF) of 1991/1992 and
1992/1993; each line is one
member of the ensemble and
the solid line is the mean;
anomalies are calculated with
respect to a 40-year mean
from the control run for
ensemble (A):

(a) temperature at 50 hPa;

(b) surface air temperature;

(c) vertical component of the EP
flux (kg/s?) at 400 hPa; bars
show one standard deviation
calculated from 40-year
control (in black).
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Geopotential height (m) averaged over ensemble (C)
a) DJF 91/92, 50 hPa level ¢) DJF 91/92, 500 hPa level

SKYHTI simulations
of geopotential height
anomaly (m) at 50 hPa
and 500 hPa caused by

aerosol surface
cooling only (C)

Winter of 91/92

Hatching shows
90% significance

Winter of 92/93
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NCEP observations of
surface air temperature
anomalies (K) with
respect to 1985-1990
mean

Winter 91/92

Hatching shows 90%
significance

Winter 92/93
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SKYHTI simulations

of surface temperature
anomaly (K) caused by
aerosols only (A)

Winter 91/92

Hatching shows
90% significance

Winter 92/93
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a) ﬂ\T (K) ensemble (AQ cllmqbo) DJF 91/92
SKYHI simulations
of surface femperature
anomaly (K) caused by &
aerosols and QBO (AQ) ...
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SKYHTI simulations

of surface temperature
anomaly (K) caused by
ozone changes only (O)

February-April 1992

Hatching shows
90% significance

February-April 1993
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SKYHTI simulations

of surface temperature
anomaly (K) caused by
aerosol surface cooling

only (C)
Winter of 91/92

Hatching shows
90% significance

Winter of 92/93
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Conclusions

Stratospheric aerosol heating, ozone depletion, and
changes to the tropospheric temperature gradient all
act to produce an Arctic Oscillation response
following large tropical eruptions.

The ozone and tropospheric mechanisms are probably
also important for long-term climatic response to
ozone depletion and global warming.
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For the details, see:

Stenchikov, Georgiy, Alan Robock, V. Ramaswamy, M. Daniel
Schwarzkopf, Kevin Hamilton, and S. Ramachandran, 2002:
Arctic Oscillation response to the 1991 Mount Pinatubo eruption:
Effects of volcanic aerosols and ozone depletion. J. Geophys.
Res., 107 (D24), 4803, doi:10.1029/2002JD002090.

Stenchikov, Georgiy, Kevin Hamilton, Alan Robock, V. Ramaswamy, and
M. Daniel Schwarzkopf, 2003: Arctic Oscillation response to the
1991 Pinatubo eruption in the SKYHI GCM with a realistic Quasi-
Biennial Oscillation. Submitted to J. Geophys. Res.

Available at http://envsci.rutgers.edu/~robock
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The Relationship Between
Snow Cover, Soil Moisture, and the
Indian Summer Monsoon:
Observations and Model Simulations

Alan Robock, Rutgers University

Collaborators:

Mingquan Mu, Rutgers University
Konstantin Vinnikov, University of Maryland
David Robinson, Rutgers University
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Blanford found a negative correlation between
snow cover and Indian summer monsoon rainfall:

Blanford, H. F., 1884: On the connexion of the
Himalaya snowfall with dry winds and seasons of drought
in India. Proc. Roy. Soc. London, 37, 3-22.

“the varying extent and thickness of the Himalayan
snows exercise a great and prolonged influence on the
climatic conditions and weather of the plains of North-
Western India...."
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Yasunari et al. (1991)

Snow can affect the
surface heat budget
through albedo and

soil moisture
feedbacks.

Are these responsible
for the observed
relationship between
snow and the
monsoon?

Alan Robock
Department of Environmental Sciences
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albedo feedback
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1967-2000
detrended

Significance level

=l ] | | | —

99% 95% 90% 90% Q5% 99%

Correlation between All—India rainfall (1967—2000)
and the previous winter and spring snow cover
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Snow and Precip

Detrended snow and precipitation - first SVD coupled mode, 1967-1998
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Circulation and
temperature in
previous winter

1958-1998

Composite of
years with high
JJAS Indian
precipitation
minus those with
low JTAS Indian
precipitation

- Significance from
Monte Carlo tests
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The Arctic
Oscillation

Thompson and
Wallace (1998)

Stronger polar vortex

Warm advection into
Europe —

500—1000 THE (WM}
L I
20
e =8 m

The Arctic Oscillation signature in the wintertime geopotential

height and temperature fields (Fig. 1 maps)

David W. J. Thompson and John, M. Wallace
Creopbrypsical Regearch Letters, Moy I, 1005
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Figure 1. Regression maps for g=opotential height (meters), tropopause pressure (Pa), 1000-300-
hPathiclmess (m), SLP (expressed as Zypgnt #) and surface alr temperaturs (SAT- E) anomaliss
as mdizated, based upon the AQ indax for 1947-1087, See text for details,
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Strong Indian Monsoon Arctic Oscillation
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Strong Indian Monsoon Arctic Oscillation
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Strong Indian Monsoon Arctic Oscillation
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So the circulation pattern that precedes strong
Indian monsoon rainfall is associated with the
North Atlantic Oscillation (NAO), and not with the
AO. It is a tropospheric and not a coupled
tropospheric-stratospheric circulation mode.

Let's see if we can use NAO as an index to
examine the period before we have reliable snow
cover data.
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Carrelation between snow cover and NAQO index in DJF {(detrended)



Are the relationships we have
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SLP in DJF (1970—2000)
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Model Version Modeling Group Scenario Reference
GFDL_R30_c Geophysical Fluid Dynamics Is92d Delworth et al.
Laboratory, Princeton, New Jersey [2002]
ECHAM3/LSG  Max Planck Institute for Meteorology, @ IS92a Cubasch et al.
Hamburg, Germany [1997]
HADCM2 Hadley Centre for Climate Prediction Is92d Johns et al.
and Research, Bracknell, UK [1997]
NCARI1 National Center for Atmospheric IS592a Meeh/ et al.
Research, Boulder, Colorado [1996]
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Conclusions on Long-Term Relationships

1. For the past 130 years, we can explain JTAS AIR using the
NAO index in the previous winter and the concurrent Nifio 3.4
SST only for the periods around 1885 (about 25 years) and
1950-1995 (about 45 years), and this relationship is now
gone.

2. These changing relationships appear to be random long-term
climate variability and are similar to those simulated by the
State-of-the-art GCMs. However, if these changes can be
understood and predicted, then perhaps snow can be used to
predict the Indian summer monsoon.
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For the details, see:

Robock, Alan, Mingquan Mu, Konstantin Vinnikov, and David
Robinson, 2003: Land surface conditions over Eurasia

and Indian summer monsoon rainfall. J. Geophys. Res.,
108 (D4), 4131, doi:10.1029/2002JD002286.

Available at http://envsci.rutgers.edu/~robock
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London Sunset After Krakatau
4:40 p.m., Nov. 26, 1883

Watercolor by Mr. W. Ashcroft
Figure from Symons (1888)
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