Tropospheric Response to Stratospheric Sudden Warmings in a Simple Global Circulation Model

Masakazu Taguchi Department of Atmospheric Sciences, University of Washington

### **Importance of SSWs in S Variations**

#### Frequency distributions of monthly-mean 30-hPa polar temperature



SSWs reflected in extreme temperatures

## Importance of SSWs in T-S coupling

- SSWs may involve two-way T-S coupling.
  - > Upward propagation of enhanced planetary waves
  - Downward propagation of S anomalies
  - S anomalies followed by anomalous T weather regimes





(Baldwin & Dunkerton 2001)

### This study

 Use of mechanistic circulation models (MCMs) relative to obs. & GCMs

> Obs. & GCMs

Limited # of samples, coexisting various processes

➢ MCMs

Large # of samples, only dynamical processes

#### This study

Composite analysis of 132 SSWs in 10,000-day MCM run to understand nature of T-S coupling:

- > T circulation changes before & after SSWs
- Interaction between planetary & synoptic waves

Relationship between SSWs & following T anomalies

⇒ Insights to T-S coupling in real SSWs

## Model

- 3D primitive-equation model for globe
- Resolution: T21, L42
  - (⇒ basic features of synoptic waves)
- Simplified physical processes
  - Newtonian thermal relaxation to perpetual winter condition
  - Rayleigh friction at surface
  - > Dry atmosphere
- Sinusoidal surface topography
  - > amplitude 1000 m
  - > zonal wavenumber 1

## Model climatology (for 1000 days)

: time mean **Std dev Time mean** (b) [T] (c) σ[T] 60 260 50 260 ( km) **Zonal mean** 40 GHT temperature ш Т 10 0 NP SP 60S 305 EQ 30N 60N NPEQ 30N 60N Large 180 240 300 0 10 20 **S** variability (e) [U] (f) σ[U] ~ SSWs 60 50 40 40 30 19H (km) 30 20 20 20 **Zonal mean** 201 zonal wind 20 10 0 SP 60S 305 EQ 30N 60N NPEQ 30N 60N NP LATITUDE LATITUDE -60 0 60 0 20 40

[]: zonal mean

Polar night jet

### **Stratospheric Variability**



⇒ Intermittent occurrence of SSWs

**Define SSW events with the time series for composite analysis:** 

- 1. Search for periods when [T] is higher than time mean
- 2. Judge if maximum [T] in each period is higher than 270 K
- ⇒ 132 SSWs in whole 10,000 days
- **Results are robust, independent of subjective values**

### **General Features of SSW Sequence**

Composites shown in anomalies normalized with  $\sigma$ 

#### **Strong warming**



## General Features of [U]' & F' (QG EP flux) for WN1

#### Poleward & downward propagation of [U]' incl. SSW signal



### **Define pre- & post-SSW periods**



T circulation is quite different before and after SSWs.
> pre-SSW : lag = -7±5 days
PW stronger than normal
> post-SSW : lag = -20±5 days
PW weaker than normal

# Z\*<sub>1</sub> (WN1) @ 254 hPa

#### (Composites shown in anomalies)



254 hPa

Z\*<sub>1</sub> (WN1)

Geostrophic wind relationship: U\* reflect wave-1 Z\*

U\* (zonal mean+ all WNs)



254 hPa

# U\* (zonal mean + all WNs)

Zonal wind regulates spatial distribution of SW activity

Variance of GPH of SWs (waves 4-10)



254 hPa

## U\* (zonal mean + all WNs)

SWs act to maintain wave 1 zonal wind

Zonal wind accel. by SWs: Div. of 3D EP flux

> Region >20° for U\* (N>600) (Div. shifted by 5.6°)





### **Procedures for Branch Runs**



In branch runs, we can look at how T changes after we damp SSW signals for 10 days.

### **Thermal Relaxation Time for Branch Runs**



#### **Choose one particular SSW event**



Broadly similar ⇔

#### **Composites of 132 events**



#### (color bars different)



#### Conclusion

Nature of dynamical T-S coupling associated with SSWs Composite analysis of 132 SSWs in 10,000-day MCM run

- Basically Similar Features to obs. & GCM results
- Diagnosis of T Circulation before and after SSWs Interaction between PW & SWs
  - ⇒ "positive feedback"
- PW Signal in T after SSWs
   Appears only following long-lasting SSW signals
   ⇒ tropospheric response to SSWs

To summarize T-S coupling in this model, PW in T, interacting with SWs (and also mean flow), responds to SSWs which the wave itself induces.