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Abstract

Salt-fingering is a potentially important mechanism for mixing different water-

masses in those parts of the ocean where warm salty waters overlie cooler

fresher.  This review surveys advances in salt-fingering theory as they pertain

to ocean mixing.  Basic equations are presented along with steady, maximum

buoyancy-flux and fastest-growing finger solutions.  Attempts to theoretically

quantify finger-induced fluxes of heat, salt and buoyancy, and to understand

staircase formation and maintenance, are described.  Also considered are the

confounding influences of internal wave shear and strain, and intermittent

internal-wave shear-driven turbulence, which are present in the ocean but in

few theories.  Finally, outstanding theoretical questions about the role of salt

fingers in the ocean are raised.

Keywords:  salt fingers, double diffusion, mixing, microstructure, water-

masses
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 1. Introduction

The density of ocean waters depends on variations in both potential

temperature q and salinity S which molecularly diffuse at different rates.

Where density is stably stratified in the vertical (light water overlying heavy)

but unstably stratified in one of its components, double-diffusive instability can

give rise to mixing of different water-masses.  In heat-salt double diffusion, the

potential energy locked in the unstable component is released through the

more rapid molecular diffusion of heat than salt (Stern 1960).  This process

occurs on molecular scales O(1 cm) but impacts much larger scales by

efficiently mixing water-mass properties.

If salt is the destabilizing component (warmer saltier water overlying

cooler fresher), the instability takes the form of tightly packed blobs of sinking

salty and rising fresh water referred to as salt fingers.  Salt fingers efficiently

flux salt vertically and could be likened to liquid alveoli in that diffusion is

amplified by the convolving isotherms and isohalines on microscales (Winters

and D’Asaro 1996).  Much of the upper ocean Central Waters at tropical,

subtropical and mid-latitudes are fingering favorable.  At a few sites, such as

east of Barbados (Mazeika 1974; Boyd and Perkins 1987), below the

Mediterranean salt tongue (Howe and Tait 1970; Elliott et al. 1974) and in

the Tyrrhenian Sea (Johannessen and Lee 1974; Zodiatis and Gasparini

1996), where destabilizing salinity gradients almost compensate stabilizing

temperature gradients, the stratification takes the form of thermohaline

staircases with O(10 m) thick well-mixed layers alternating with O(1 m) thick

high-gradient interfaces.



4

This paper reviews salt-fingering theory with an emphasis on aspects

relevant to characterizing salt-finger microstructure and fluxes in the ocean.

Observational evidence for salt fingers in the ocean is summarized in Schmitt

(2000 this issue) and a review of salt-finger numerical simulations given by

Yoshida and Nagashima (2000 this issue).  Theoretical and observational

aspects of double-diffusive intrusions, which are often driven by salt-finger

fluxes, are described by Ruddick and Kerr (2000 this issue) and Ruddick and

Richards (2000 this issue), respectively.

Section 2 introduces the fundamental equations of motions for tall thin

salt fingers.  General solutions are presented in section 3, while steady,

maximum buoyancy-flux and fastest-growing salt-fingers are discussed in

sections 4 and 5, respectively.  Section 6 reviews efforts to quantify salt-finger

fluxes theoretically for both the laboratory and ocean.  Section 7 briefly

considers the formation and maintenance of thermohaline staircases which are

observed in regions of the ocean where the density ratio zz STR bar /= is less

than 1.7.  Interactions of salt-finger with finescale internal-wave shear and

strain, and intermittent internal-wave-shear-driven turbulence, are discussed in

Section 8.  Finally, I present outstanding theoretical questions that must be

addressed before we can fully understand salt fingers in the ocean.
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2.  Equations of Motions

The equations of motion for tall, narrow (∂/∂z << ∂/∂x, ∂/∂y) salt

fingers growing in uniform background vertical gradients were first derived

by Stern (1960)

wt  = g(aT' – bS') + n—2w

T't + w zT  = kT—2T' (1)

S't + w zS  = kS—2S'

where w, T' and S' are the fingers’ vertical velocity, temperature and salinity

perturbations relative to a horizontal average, zT and zS  are average vertical

temperature and salinity gradients (possibly modified by the fingers),

—2 = ∂2/∂x2 + ∂2/∂y2 the horizontal Laplacian, n the molecular viscosity, kT

the molecular diffusivity of heat, and kS the molecular diffusivity of salt.  For

growing salt-finger instabilities, both background temperature )(zT  and

salinity )(zS  must decrease with depth (Stern 1960) and the density ratio

Rr = zz ST ba / must be less than the diffusivity ratio kT/kS = 100 (Huppert and

Manins 1973). The quantity g(aT' – bS') is the buoyancy anomaly b' which

induces vertical motions of the fingers.  The buoyancy anomaly is created by

more rapid diffusion of heat than salt between adjacent fingers, warming cool

fresh anomalies to make them lighter, and cooling warm salty anomalies to

make them heavier, than the adjacent fluid.  For high Prandtl number n/kT >>

1 ( ~–  7 in the ocean), the viscous term in the vertical momentum equation

greatly exceeds the vertical acceleration wt which can be neglected for all but

density ratios Rr – 1 much less than kT2/(4n2) = 0.0025 which are not realized

in the ocean.  Schmitt (1979b) overcame the increased complexity as density

ratio Rr approaches 1 by posing the problem in terms of flux ratio RF =
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<waT'>/<wbS'>.  For the oceanic range of density ratios (Rr ≥ 1.4), the

vertical momentum equation reduces to a balance between the buoyancy

anomaly and viscous drag.  For high diffusivity ratios, k T /k S >> 1 (kT /k S  =

100 in ocean), the diffusive term in the salinity equation can be neglected for

density ratios Rr much less than kT/kS for many problems.

3. General Solutions

Assuming either that (i) salt diffusion extends across the entire finger

width or (ii) fingers are of finite height growing in uniform background

gradients, solutions for the above equations can be found for horizontal

planforms that are square estsin(kxx)sin(kyy), sheet estsin(kxx), or a

combination of the two that can take the form of triangles, hexagons or

asymmetric plumes (Schmitt 1994).  Here, s is the growth rate, and kx and ky

are horizontal wavenumbers.  While Proctor and Holyer (1986) found that

sheets were the most stable mode, a more careful analysis by Radko and

Stern (2000) has demonstrated that square planform fingers are the most

stable, consistent with laboratory findings.  Well-ordered fingers are observed

in laboratory and numerical experiments at high density ratios but become

increasingly disordered at low Rr.  Growth rates s are positive for density

ratios Rr less than the diffusivity ratio (inverse Lewis number) kT/kS and for

horizontal wavenumbers

k = 
2p

l   < 

4
(kT – RrkS)gbSz̄

4nkTkS
  (2)
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(Fig. 1).  For any given density ratio Rr, maximum growth rates occur at

intermediate wavelengths (dashed curve) due to competition between

destabilizing heat diffusion and stabilizing viscous drag, both of which

intensify at smaller scales.  Maximum growth rates increase as density ratios

Rr approach 1.

Figure 2 displays the ratio RF = <w'aT'>/<w'bS'> of heat-flux to salt-

flux contributions to the buoyancy-flux as a function of density ratio Rr and

horizontal wavelength l.  Heat-salt laboratory experiments (corrected for

molecular diffusion of heat through the interface and tank sidewalls) typically

find flux ratios of 0.6-0.65 (Fig. 3; Turner 1967; Schmitt 1979a; Taylor and

Bucens 1989), consistent with fastest-growing finger flux ratios; McDougall

and Taylor (1984) and Linden (1973) reported lower values, suggesting a

possible contribution from steady fingers or fingers of maximum buoyancy-

flux under some circumstances (see later).  Schmitt et al. (1987) inferred flux

ratios of 0.85 in the thermohaline staircase east of Barbados based on the

lateral density ratio of the homogeneous layers.  The oceanic values were

argued to be a combination of fastest-growing finger flux ratio and either

(i) turbulence with flux ratio RF = Rr = 1.6 (Marmorino 1990; Fleury and

Lueck 1991), or (ii) nonlinearity in the seawater equation of state influencing

the flux divergence and so elevating the flux ratio (McDougall 1991).

Theoretical studies have focussed on fastest-growing, steady and

spectral descriptions of salt fingers.  Investigations of fastest-growing fingers

(Stern 1975; Schmitt 1979b; Kunze 1987) have been motivated by the close

match of the fastest-growing flux ratio with laboratory and numerical

simulation flux ratios (Fig. 3), as well as the expected long-time dominance of
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fastest-growing fingers.  The spectral approach recognizes that a range of

scales is likely to be present, and that fingers may break down due to

secondary instability before fastest-growing fingers dominate, particularly at

low density ratio (Gargett and Schmitt 1982; Shen and Schmitt 1995).

Allowing finger heights at all wavelengths not to exceed a fixed length, Shen

and Schmitt (1995) derived a finger wavenumber spectrum for temperature

gradient with a + 2 slope, consistent with observations (Marmorino 1987;

Mack 1989) albeit with either fluxes or interface thicknesses inconsistent with

oceanic values.  Theoretical work to date has neglected finger/finger

interactions.

4. Steady Solutions

Steady models have been developed for thin interfaces sandwiched

between homogeneous layers on the grounds that, because of the interface's

finite thickness, these are expected to evolve quickly to steady state (Stern

1976; Joyce 1982; Howard and Veronis 1987; 1992; Shen 1993).  Stern

(1976) examined the steady solution, choosing the wavenumber

[ga zT /(4nkT)]1/4 that produced maximum buoyancy-flux for a given DS; this

is not the same as the steady finger wavenumber in the previous section.  The

associated flux ratio was 0.2-0.25.  Because salt diffusion is negligible, fingers

connecting homogeneous reservoirs do not have sinusoidal salt structure.

Howard and Veronis (1987) examined this structure for steady fingers of

maximum buoyancy-flux extending between two homogeneous reservoirs in

the limit of very small salt diffusivity

kS/kT << 1, obtaining similarity solutions for the boundary layers between

adjacent fingers.  They again found flux ratios of ~ 0.25.  This flux ratio is
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considerably less than the values greater than 0.5 found in most lab

experiments.  However, Shen (1993) points out that steady models can yield

a flux ratio ~ 0.5 when the wavenumber that maximizes finger velocity rather

than buoyancy-flux is used.  Maximizing velocity is equivalent to maximizing

the growth rate in the limit that salt diffusion extends across the fingers.

Howard and Veronis (1992) examined the stability of steady fingers of

maximum buoyancy-flux as a function of a nondimensionalized salinity step,

or finger aspect ratio, Q = bDS/(lbaT̄ z) = Rr–1(li /lb) where

lb = [4nkT/(gaT̄ z)]1/4 is the buoyancy-layer scale and li the interface

thickness.  They found that the dominant instability switched from being

oscillatory involving viscosity and heat diffusivity for Q < n/kT (short fingers)

to pure real due to shear between adjacent fingers —w at higher Q (tall

fingers).

Relaxing the condition that the fingers be tall and narrow (e.g., Howard

and Veronis 1987), additional terms must be included in the equations of

motion such as the vertical pressure gradient pz in the vertical momentum

equation, vertical diffusion k∂2/∂z2, and horizontal advection of temperature

and salinity, particularly at finger tips.  These additional terms could play an

important role at low density ratios, where fingers are short and stubby rather

than tall and narrow, or for fingers evolving in thin high-gradient interfaces

sandwiched between two homogeneous layers as characterizes most lab and

numerical experiments.  Numerical simulations under these conditions show

formation of bulbous tips resembling mushrooms where the fingers intrude

into the adjacent homogeneous layers (Fig. 4; Shen 1989; Shen and Veronis

1997).  The resulting structure and flux ratios depend on the destabilizing

salinity step across the interface DS as well as the density ratio Rr.
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Presumably, there is also dependence on the thickness of the high-gradient

interface lI through Q (see earlier).

5. Fastest-Growing Fingers

In the remainder of this review of salt-fingering theory, the focus will

be on fastest-growing fingers of sinusoidal horizontal structure because flux

ratios and wavelengths observed in most laboratory experiments (Turner

1967; Linden 1973; Schmitt 1979a; McDougall and Taylor 1984; Taylor and

Bucens 1989) and numerical simulations (Shen 1993; 1995) are consistent

with dominance of fastest-growing fingers (Fig. 3).  Microstructure tows in

the ocean also find horizontal wavenumbers consistent with fastest-growing

fingers (Magnell 1976; Gargett and Schmitt 1982; Lueck 1987; Marmorino

1987; Mack and Schoeberlein 1993).  Uniform background vertical gradients

will be assumed since thin interfaces appear to be atypical of the ocean

(Linden 1978; Kunze 1987).  Advection can then create sinusoidal salt

structure in the horizontal -- unlike the case of a thin interface between two

homogeneous reservoirs where the horizontal structure for salt can only be

sinusoidal if diffusion spans the width of a finger (Shen 1993).  Numerical

simulations find tall well-ordered fingers at high density ratio, becoming

shorter and more disordered as the density ratio approaches one, more

closely resembling a field of rising and sinking blobs that collide and

maneuver around each other.  Shen (1993) suggested that collisions between

rising and sinking blobs set the terminal velocity of the fingers.  But by

tracking individual blobs, Merryfield and Grinder (2001) found that linear

viscous drag and nonlinearity were the controlling factors.
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Theory readily identifies the fastest-growing salt-fingering wavenumber

kfg = 
2p

l   = 

4
gbS̄z(Rr – 1)

nkT
  (3)

(Fig. 5), associated growth rate

smax = 
1
2 

(kT – RrkS)gbS̄ z

n  ( Rr – Rr – 1) , (4)

(Fig. 6) and flux ratio

RF = 
aFT

bFS
  = 

a<w'T'>
b<w'S'>  = Rr ( Rr – Rr – 1) (5)

(Fig. 3) as functions of salinity gradient zS  = ∂S /∂z and density ratio

zz STR bar /=  (Stern 1960; 1975; Schmitt 1979b; Kunze 1987).  Walsh and

Ruddick (2000) find that a decreasing flux ratio with density ratio produces

an instability of increasing growth rate with decreasing vertical scale.

6. Fluxes

Of principal interest to the oceanographic community at large are the

heat- and salt-fluxes produced by salt fingers since these modify water-masses.

Quantifying these fluxes is difficult, requiring knowledge of what limits the

growth of fingers to finite amplitude.  This was originally attempted through

laboratory experiments in which heat- and salt-fluxes were measured between
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two well-mixed layers separated by a thin fingering-favorable interface

(Turner 1967; Linden 1973; Schmitt 1979a; McDougall and Taylor 1984;

Taylor and Bucens 1989).  The heat- and salt-fluxes were found to depend

only on the salinity step across the interface DS and the density ratio Rr

gbFS = c [gbDS]4/3f(Rr)

(6)

gaFT = RF.gbFS

where the constant c = 0.085 was evaluated from solid-plane flux experiments

(Turner 1967).  Laboratory flux ratios RF are in agreement with the

theoretical expression for fastest-growing fingers (3) in the Turner (1967),

Schmitt (1979a) and Taylor and Bucens (1989) work but lower in Linden

(1973) and McDougall and Taylor (1984) experiments.  The DS4/3 flux law (6)

arises from dimensional reasoning under the proviso that the interface

thickness is unimportant (Turner 1967; Radko and Stern 2000).  Application

of this DS4/3 flux law is hampered in most of the fingering-favorable ocean by

the absence of well-defined layers and interfaces so that the salinity step DS

cannot be plausibly quantifiable.  Even in well-defined staircases, the lab DS4/3

flux laws have been found to overestimate fluxes by over an order of

magnitude (Gregg and Sanford 1987; Lueck 1987; Kunze 1987; Hebert

1988; Bianchi et al. 2002), because the high-gradient interfaces are thicker

than lab predictions (Linden 1978; Kunze 1987); in contrast, the high-gradient

interfaces in the ocean’s diffusively convective staircases are as thin as

expected (Padman and Dillon 1987) so the absence of thin interfaces is not

due inadequate sensor resolution.
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In continuous background stratification, Stern (1969) argued on

dimensional grounds that the maximum ratio of the buoyancy-flux <w'b'> to

nN2 should be

<w'b'>
nN2   ~ O(1) (7)

where n is the molecular viscosity and N the buoyancy frequency.  This

nondimensional limit on the magnitude of salt-finger fluxes has come to be

known as the Stern number or collective instability criterion.  Stern

suggested that finger energy would be lost to larger-scale oscillations of

wavenumber K.  More rigorously, Holyer (1981) demonstrated secondary

instability of steady (s = 0) fingers to oscillatory long internal-wave

oscillations of very low aspect ratio Kx/Kz if the Stern number <w'b'>/nN

exceeds 1/3.  Holyer (1984) confirmed that collective instability is the fastest-

growing provided the Prandtl number n/kT is very large,

 (n/kT) (kS/kT ) (Kx2/K2)[(Rr – 1)/(1 – RrkS/kT)] >> 1, and K2 << k2.

However, for the heat-salt system, she identified a different nonoscillatory

instability with (Kx, Kz ) = (0, 0.3)kx which grew ten times faster than

collective instability.  Shen (1995) showed that 2-D fingers are shear-unstable

at all wavenumbers, not just the steady fingers examined by the above

investigators.  Fingers in uniform background gradients tend to be

disorganized, achieving a steady state with a stationary Stern number (7) only

in a statistical sense (Shen 1993; 1995).  Rather than being a universal

constant, the critical Stern number appears to be a function of density ratio

Rr, Prandtl number n/kT and Lewis number kS/kT.  While heat-salt lab

experiments find Stern numbers O(1), sugar-salt experiments find values of

0.002-0.006 (Lambert and Demenkow 1971; Griffiths and Ruddick 1980).
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Kunze (1987) suggested that finger amplitudes could be limited by

secondary instability for unity finger Froude number

N

w
Frf

|| —=  ~ O(1) (8)

in which the usual vertically-sheared horizontal velocity |Vz| is replaced by

horizontally-sheared vertical velocity |—w|.  As in Miles and Howard (1961),

this corresponds to when the shear contains sufficient kinetic energy to

overcome the potential energy of the stratification.  It does not take into

account possible damping of any instability by molecular processes (see

section 2).

For fastest-growing fingers, the finger Froude number (8) is virtually

identical to the Stern number except very near density ratios of Rr = 1; a

Reynolds number criterion wl/n ~ O(1) yields a similar constraint (Stern

1969).  Applied to gradients in oceanic fingering-favorable regions, the Stern,

or finger Froude, number constraint predicts fluxes

gaFT = ga<w'T'> = 
Frc2 CT

Cw2stmax
  ngbS̄  z [ Rr( Rr + Rr – 1) ]

(9)

gbFS = gb<w'S'> = 
Frc2 CS

Cw2stmax
  ngbS̄  z [( Rr  + Rr – 1 )2],

where Frc is the critical finger Froude number, Cw, CT and CS are O(1)

geometric constants associated with the horizontal planform structure

( = 0.25 for square planform fingers, 0.5 for sheets), and the time-average

factor
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2stmax = ln[8nFrc2

CwkT
 Rr – 1( Rr + Rr – 1) 3] (10)

for exponential growth from perturbations of aspect ratio

one initially.  The above flux laws counterintuitively

predict larger fluxes for higher density ratios despite

faster growth rates at low density ratios.  As discussed

later, slower growing fingers at high density ratios may be

disrupted and suppressed by intermittent turbulence and

other processes in the ocean so that faster-growing fingers

at low density ratios dominate.  Walsh and Ruddick (1995)

find that the above flux law creates an instability that

grows without bound as its vertical scale approaches zero

(ultraviolet catastrophe).

This criterion (9-10) predicts fluxes of comparable

magnitude to those inferred from many oceanic

microstructure observations (Gargett and Schmitt 1982)

and largescale budgets (Hebert 1988; Bianchi et al. 2002).

In particular, it produces fluxes comparable to those

found in the thermohaline staircase east of Barbados

(Gregg and Sanford 1987; Lueck 1987; Marmorino et al.

1987).  However, its predictions are a factor of 30 smaller

than fluxes deduced by St. Laurent and Schmitt (1999) in

the eastern N. Atlantic.  St. Laurent and Schmitt carefully

binned shear and temperature microstructure with
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respect to density ratio and Richardson number.  They

used gradients smoothed over 5 m which could bias

model fluxes low if unresolved permanent layering

finestructure is present.  Their average  fluxes were

dominated by contributions from low density ratio and

high Richardson number (see section 8.2).

Equating the high-gradient interface thickness l i to

the maximum finger height hmax, the Stern or finger

Froude number constraint reproduces laboratory heat-salt
D S4/3 flux laws except at density ratios R r  < 2 where fluxes

are underpredicted by factors of 2-3 (Figs. 7 and 8; Kunze

1987; Shen 1993).  This criterion implies interface
thicknesses l i ~ 0.3 m, an order of magnitude smaller than

the 2-5 m thickness typically observed in oceanic

staircases (Linden 1978; Boyd and Perkins 1987).

Numerical simulations are gradually becoming capable of simulating

salt fingers for oceanic Prandtl and Lewis numbers though even two-

dimensional simulations of heat-salt fingers have been limited to domains a

few fingers wide (Shen 1995; Merryfield and Grinder 2001) and 3-D

simulations cannot yet handle the heat-salt system (Stern et al. 2001).  While

Shen (1995) did not compare his modelled fluxes with observations, we will

attempt to do so here.  Their fluxes (Fig. 9) are considerably higher than
those from (9)-(10) (Figs. 7 and 8) for density ratios Rr < 3, thus comparable

with those inferred by St. Laurent and Schmitt (1999) and over an order of

magnitude higher than those inferred in the staircase east of Barbados
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(Gregg and Sanford 1987; Lueck 1987; Marmorino et al.

1987).  For unbounded background gradients, Radko and Stern (1999) and

Stern et al. (2001) found that 3-D numerical simulations yield finger fluxes 2-

3 times higher (Nusselt numbers zTT TFNu k/=  of 43 and salt diffusivities of

0.2 x 10-4 m2 s-1 for the conditions found in the eastern N. Atlantic) than 2-D

simulations (Fig. 9).  The 3-D instability is not collective instability but arises

from lateral salinity gradients and transfers energy to vertical scales similar to

finger horizontal scales.  Their fluxes were proportional to background

vertical gradients zS  and zT .  In contrast, Radko and Stern’s (2000)

simulations bounded above and below by rigid boundaries produced fluxes

proportional to DS4/3 and independent of domain dimension and height.
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7. Staircase Lengthscales

With linear dependence on the salinity gradient zS  across the interface

in (9), oceanic fingering fluxes in staircases should depend both on (i) the

layer thickness Lo, which establishes the interfacial salinity step

DS = < zS > (Lo + li) in a largescale smoothed salinity gradient < zS >, and

 (ii) the interface thickness li  which determines the interfacial gradient

zS  = DS/li = < zS >(Lo + li)/ li  [ ~–  < zS >Lo/li for a staircase with Lo >> li].

What controls layer and interface staircase thicknesses in the ocean is

not known.  While staircase formation has traditionally been thought of as a

1-D instability induced by collective instability (Stern 1969), metastable

equilibria (Stern and Turner 1969) or the countergradient double-diffusive

buoyancy-fluxes (Stern and Turner 1969; Schmitt 1994; Özgökmen et al.

1998), it may also arise from horizontal interleaving (Merryfield 2000;

Ruddick and Kerr 2000 this issue); sites of prominent staircases are also

regions of largescale horizontal water-mass gradients.  Horizontal intrusions

may also explain the alternating diffusive and fingering layers that extend

across entire basins in the Arctic Ocean, crossing different water-masses and

water-ages with impunity (Carmack et al. 1997).  Merryfield (2000) explored

the 1- and 2-D hypotheses, coming to the conclusion that 1-D mechanisms

required solid boundaries above and below, or large imposed disturbances to

the stratification, to induce sufficiently strong buoyancy-flux divergences to

form a staircase.  In the case of the countergradient buoyancy-fluxes,

Merryfield found no preferred scale for staircase steps; they grew indefinitely.

On the other hand, his simulations of 2-D double-diffusive intrusions formed
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thermohaline staircase structure for low density ratio and turbulent mixing

rates as observed.

Given the persistence and invariance of oceanic thermohaline staircase

structures over at least 25 years (Schmitt 1995; Zodiatis and Gaspirini 1996),

staircases have more than enough time to establish thin DS4/3 flux law

interfaces.  A range of interface thicknesses were found in the thermohaline

staircase east of Barbados, including a few of O(0.1 m).  However, the bulk of

the interfaces were 2-5 m thick, an order of magnitude too large for DS4/3

flux laws to apply (Linden 1978; Kunze 1987).

Kelley's (1984) scaling for layer thickness

H = NT /k .f(Rr, n/kT, kT/kS) and eddy diffusivity KT = cfRa1/3kT appears

to work well for diffusively-unstable staircases.  One might blindly replace the

molecular diffusivity of heat kT with the fingering salt diffusivity

FS/<S̄ z>.  However, using observed microstructure estimates of the salt-flux

(Gregg and Sanford 1987; Lueck 1987) underestimates the layer thicknesses.

Interestingly, a laboratory-inferred DS4/3 salt-flux (6) produces layer

thicknesses of the right order of magnitude.  Merryfield's (2000) double-

diffusive intrusion model also reproduces observed step thicknesses (layer plus

interface) but he did not discuss layer and interface thicknesses separately.
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8. Different Fluxes in the Lab and Ocean

Why are oceanic fluxes so much weaker, or equivalently, oceanic

interfaces so much thicker, than those found in laboratory experiments and

numerical simulations?  Most laboratory and numerical experiments have

been initialized as two homogeneous layers separated by a very thin interface

which is allowed to thicken under the influence of fingers.  In the ocean, the

initial state is probably better-described as one of continuous stratification.

Numerical simulations by Stern and Radko (1999) and Merryfield (2000)

suggest that, by themselves, salt fingers can only create steps if flux

divergences are externally forced by rigid boundary conditions or large

perturbations to the stratification.  But, once created, these evolve toward

thinner interfaces with DS4/3 fluxes across them (Stern and Turner 1969;

Linden 1978; Özgökmen et al. 1998; Radko and Stern 2000).  This suggests

that some additional process present in ocean staircases but not in idealized

experiments prevents interfaces from thinning.  Possible candidates include

finescale internal wave shear and strain fluctuations, and intermittent internal

wave-driven turbulence.

8.1. interaction with internal-wave strain xz

Internal-wave vertical divergence ∂w/∂z = ∂(xz)/∂t would act to stretch

and squash the fingering environment and possibly rectifying fluxes,

depending on the relative timescales of the strain xz and finger adjustment.

Lab experiments by Stamp et al. (1998) found that feedback between

internal wave strain and diffusive instability organized the convective motions

and fed energy into internal waves.  This process has yet to be explored in an
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oceanic parameter regime or for salt fingers.  Straining may also

intermittently create thin interfaces for sufficient durations for large fluxes to

develop.

8.2. interaction with internal-wave vertical shear Vz

Vertical shear Vz = (Uz, Vz) will act to tilt square planform salt fingers.

Linden (1974) demonstrated in the lab and analytically (see also Thangam et

al. 1984) that, in steady rectilinear shear Uz, fingers formed vertical sheets

sin(kyy) aligned with the shear.  Linden reported the fluxes to be unaltered by

the presence of vertical shear.

Finescale vertical shear in the ocean is dominated not by steady but by

O(N) anplitude near-inertial internal wave fluctuations.  These rotate clockwise

in time with a timescale of f–1, where f = 2Wsin(lat°) is the Coriolis frequency,

and turn either clockwise and anticlockwise with depth, e.g., ( zu , zv ) =

zV [ )cos( tzkz w- , )sin( tzkz w- ].  Near-inertial shear will turn out of alignment

with initially-aligned sheets, possibly explaining the nearly-horizontal 0.5-cm

laminae consistently observed with a shadowgraph (Laplacian of index of

refraction —2h) in fingering-favorable parts of the ocean (Kunze et al. 1987;

St. Laurent and Schmitt 1999).  These laminae appear to have horizontal

scales consistent with fastest-growing scales.  Their small vertical scale would

diffusive away molecularly in ~ 4 minutes if they were temperature, and in ~

8 h if they were salinity, so they must be continuously replenished to be

present in the ocean.  Using the WKB wavenumber evolution equation

Dkz
Dt   = – kxUz, (11)
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Kunze (1990) argued that the observed structure could represent remnant

shear-tilted salt microstructure just before it is molecularly diffused away.

Fastest-growing fingers that tilt as they grow will have diminishing cross-

finger scales, so also diminishing growth rates s and flux ratios RF =

aFT/bFS.

Kunze (1994) suggested that near-inertial shear might also alter the

finger Froude number criterion as a means of explaining towed

microstructure measurements.  In the staircase east of Barbados, Cox

numbers <(—T)2>/(< zT >2) were observed to depend linearly on background

temperature gradient in the staircase east of Barbados (Fig. 10; Marmorino et

al. 1987; Fleury and Lueck 1991).  This observation implies fluxes

independent of interface thickness and background salinity gradient zS  while

the Stern, or finger Froude, number constraint (8) predicts Cox numbers of

 ~ 8 independent of interface thickness, and fluxes inversely dependent on

interface thickness (9) [linearly dependent on zS ].  A modified Froude

number criterion

Uzwy
N2   ~ O(1) (13)

reproduces the observed Cox numbers, where Uz = DU/li is the background

shear, wy the finger shear and the velocity step DU was observed to be

independent of interface thickness.  However, arguments for such a criterion

are entirely heuristic.  A better understanding of how near-inertial shear

modifies finger dynamics will be needed to quantify salt-fingering fluxes of
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heat, salt and momentum in the ocean.  A synergy of theory, laboratory and

numerical experiments will likely be needed to solve this problem.

8.3. interaction with intermittent shear-driven turbulence

Turbulence produced by internal wave shear is an intermittent process

found in 5-10% of the stratified ocean interior.  Linden (1971) demonstrated

that even very weak turbulence completely disrupts finger fluxes.  This result

was used by Kunze (1995) to argue that the intermittent turbulence patches

lasting about a buoyancy period and arising every 10-20 buoyancy periods in

the ocean would allow the more rapidly growing fingers at density ratios

Rr < 2.0 to attain their maximum height (as determined by a finger-Froude-

number-like constraint; see section 6), while preventing slower-growing

fingers at higher density ratios from reaching their full amplitude.  This

dramatically reduces fingering fluxes for density ratios Rr > 2 (Fig. 11) and

may help explain why thermohaline staircases are only found at density ratios

less than two.  The downgradient buoyancy-fluxes associated with high-

Reynolds-number turbulence will act to smooth vertical finestructure in

contrast to the tendency for countergradient double-diffusive fluxes to

sharpen finestructure.  Competition between downgradient turbulent and

countergradient double-diffusive buoyancy-fluxes may determine whether

background stratification is smooth or steppy on finescales.
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9. Conclusions and Discussion

Progress has been made in applying salt-fingering theory to ocean

observations, and for reconciling differences in results from the ocean

observations, laboratory experiments and numerical simulations.  However,

more rigorous and complete explanations for what controls the fluxes are

needed.  Many questions remain before we can quantify the role of salt-

fingering in mixing the global ocean.

Foremost is determining what limits finger fluxes of heat and salt in the

ocean since this has important implications for larger-scale thermohaline

circulation.  Laboratory DS4/3 flux laws apparently do not apply (Gregg and

Sanford 1987; Lueck 1987; Hebert 1988).  Stern or finger Froude number

contraints, while ad hoc, have had success in reproducing some inferred

ocean fluxes (Gregg and Sanford 1987; Lueck 1987;

Marmorino et al. 1987; Hebert 1988; Bianchi et al. 2002),

and in reconciling lab heat-salt and ocean flux magnitudes.  However, they

underestimate lab heat-salt fluxes at low density ratios (Fig. 7) and

overestimate lab sugar-salt fluxes, suggesting dependence of the fluxes on

density ratio Rr, Prandtl number n/kT and Lewis number kS/kT not included

in these constraints.  They also underestimate recent numerical simulations

(Fig. 9) and microstructure-inferred fluxes from the eastern N. Atlantic (St.

Laurent and Schmitt 1999), dominated by signals at low density ratio and

high Richardson number, suggesting possible additional dependence on

finescale internal wave shear and strain, and intermittent shear-driven

turbulence.  Two-dimensional numerical simulations by Shen (1995) and
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Merryfield and Grinder (2000) produce fluxes more compatible with St.

Laurent and Schmitt’s inferred values

(Fig. 9).  Numerical simulations of Radko and Stern (1999; 2000) find fluxes

2-3 times higher in 3-D than in 2-D simulations; this effect is more marked for

fingers in uniform background gradients (Radko and Stern (1999) than

fingers sandwiched between two convecting layers (Radko and Stern 2000).

These discrepancies reveal that we do not yet have a complete dynamical

understanding of the processes controlling salt-finger fluxes.   A rigorous and

complete stability analysis of growing fingers is needed spanning the oceanic,

laboratory and numerical parameter space to determine if there is a single

stability criterion for the fluxes that can be physically justified and

experimentally validated.

Unlike most theoretical, laboratory and numerical considerations of salt

fingers, fingers in the ocean co-exist with finescale internal-wave shear of

O(N) and strain of O(1), and intermittent internal-wave shear-driven

turbulence present in 5-10% of the ocean interior.  From the few studies that

have investigated interactions between fingers and other oceanic phenomena

it is clear that these will affect finger growth, stability, flux ratios and fluxes.

Shear tilts fingers, reducing their cross-finger scales, growth rates and possibly

their flux ratios.  Ad hoc stability criteria involving internal wave and finger

shear suggest that higher fluxes may be possible in weak internal wave shear

than in fingers alone, possibly explaining the high fluxes inferred by St.

Laurent and Schmitt (1999) at low density ratio and high Richardson number

in the eastern N. Atlantic.  Intermittent turbulence will disrupt the growth of

fingers, inhibiting finger fluxes at higher density ratios where fingers grow

more slowly.  Understanding salt-finger signals in oceanic measurements and



2 6

correctly inferring heat- and salt-fluxes will undoubtedly require a better

understanding of these interactions.

Since salt-finger fluxes depend on the structure of the background

stratification, it is also important to determine the mechanisms for forming

and maintaining layered finestructure, thermohaline staircases and double-

diffusive intrusions.  Intrusion theory is well-advanced (Ruddick and Kerr

2000 this issue) and appears to be able to explain ocean observations

(Ruddick and Richards 2000 this issue).  Both the countergradient buoyancy-

flux of salt fingers and double-diffusive intrusions appear to be capable of

creating staircase structures but a quantitative prediction for layer and

interface thicknesses is still lacking.
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Table 1:  Parameter values typical of the thermohaline staircase east of

Barbados.

Variable Value

n 10–6 m2 s–1

kT 1.4 x 10–7 m2 s–1

kS 1.1 x 10–9 m2 s–1

g 9.8 m s–2

a 2 x 10–4 °C–1

b 7.5 x 10–4 psu–1

Lo 20 m

li 2 m

T̄ z 0.3 °C m–1

S̄  z 0.05 psu m–1

N 1.5 x 10–2 rad s–1

PN = 2p/N 7 min

Rr 1.6

lfg 3.1 cm

Uz 6.3 x 10–3 rad s–1

f 3.5 x 10–5 rad s–1

Pf = 2p/f 2 days

Ri 6
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FIGURE CAPTIONS

Figure 1:  Contours of salt-finger growth rate s normalized by buoyancy

frequency N for parameter values typical of the high-gradient interfaces in the

thermohaline staircase east of Barbados (Table 1) as a function of finger

wavelength l and background density ratio 1 < )/( zz STR bar =  < 2.  Growth

rates are negative (decay) for wavelengths l less than 0.8 cm and positive for

larger wavelengths, but only exceed the buoyancy frequency N =

gbS̄z(Rr – 1)  at very low density ratios.  The dotted curve displays the

wavelength of maximum growth rate as a function of density ratio.

Figure 2:  Contours of flux ratio RF = <waT'>/<wbS'> as a function of finger

wavelength l and density ratio Rr.  The dotted curve is the wavelength of

maximum growth rate as a function of density ratio.  The flux ratio RF

increases from 0 for vanishing growth rate to 0.85 for low density ratios and

larger wavelengths.  Steady fingers lie near l  = 0.8 cm, implying flux ratios

less than 0.05 (see Fig. 3).

Figure 3:  Salt-finger flux ratio RF = <waT'>/<wbS'> vs. density ratio Rr.

Symbols are from laboratory (solid symbols) and numerical simulation (open

symbols) estimates, the solid curve for theoretical fastest-growing fingers and

the dashed curve for steady (s = 0) fingers.

Figure 4:  An example of numerical simulation of growing salt fingers in a

thin interface (Shen 1993).  The resulting structure does not resemble the tall

thin fingers of theoretical treatments but quickly becomes nearly isotropic and

blob-like.
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Figure 5:  Theoretical wavelengths l as a function of density ratio Rr for

fastest-growing (solid) and steady (dashed) fingers using typical properties of

interfaces in the thermohaline staircase east of Barbados (Table 1).

Figure 6:  Maximum theoretical finger growth rates s (solid) as a function of

density ratio Rr for interfaces in the thermohaline staircase east of Barbados

(Table 1).  Also shown are buoyancy frequencies N (dashed) and molecular

viscous and diffusive timescales (dotted).

Figure 7:  Theoretical heat (dashed), salt (dotted) and total negative (solid)

buoyancy-fluxes as a function of density ratio Rr, assuming that the

maximum finger amplitude is constrained by a critical finger Froude number

Frc = |————w|/N = 2.0.  The upper panel assumes an interface thickness li of 2 m,

consistent with observed values.  The central panel assumes an interface

thickness li identical to the maximum finger height hmax, producing interface

thicknesses of ~O(10 cm) and higher fluxes as a result.  The bottom panel

normalizes these fluxes by a DS4/3 flux law and compares the salt-flux (dotted)

with c values from laboratory and numerical experiments (symbols).  The

model reproduces the laboratory values at density ratios Rr > 2 but

underestimates fluxes at low density ratios Rr.
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Figure 8:  Flux ratio RF (a), DS4/3 flux law coefficient c (b) and Stern number

A (c) as a function of density ratio from numerical simulations (solid

diamonds) and lab experiments (other symbols) (from Shen 1993).

Laboratory and numerical model numbers are consistent with each other and

indicate that the critical Stern number is not an invariant.

Figure 9:  Finger-induced salt diffusivities KS as a function of density ratio

Rr in a uniform background vertical gradient from a Stern-number constraint

(9-10) (dotted curve) and from 2- and 3-D numerical simulations (symbols).

The dependence on density ratio differs markedly in the two approaches, with

the numerical simulations implying much higher eddy diffusivities for density

ratios  Rr < 3.

Figure 10:  Temperature Cox numbers CT versus vertical temperature-

gradients zT  in interfaces of the thermohaline staircase east of Barbados.  Data

are from (a) a towed microscale conductivity cell (Marmorino 1989) and (b) a

towed microthermistor (Fleury and Lueck 1991).  Solid dots in (a) denote the

mean of the distribution, open circles the mode.  Only means are displayed in

(b).  In both data sets, mean Cox numbers CT are roughly proportional to
1-

zT .
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Figure 11:  Alternative theoretical finger salt diffusivities KS as a function of

density ratio Rr.  The solid curve assumes a finger Froude number constraint

Frc = |————w|/N = 2.0, the thin dashed curve a mixed finger/wave Froude

number Uzwy/N2 = 2.0 with wave shear Uz = 0.6N, and the thick dashed

curve represents the diffusivity relative to gradients smoothed over a staircase

><><- zSSw /'' .  Dotted curves correspond to diffusivities where finger

growth is squelched by intermittent internal-wave-driven turbulence every 10

buoyancy periods.  A plausible scenario for the ocean is that (i) at high

density ratios (Rr > 2.4), finger growth is inhibited by turbulence rather than

self secondary instability (dotted curves), while, (ii) at low density ratios (Rr <

1.6), finger countergradient buoyancy-fluxes overcome turbulent

downgradient buoyancy-fluxes (stippling) so that staircases form, producing

high-gradient interfaces and amplifying fluxes (thick dashed).  At intermediate

density ratios, finger diffusivities will lie between the thin dashed and thick

solid curves, depending on the strength of the internal wave shear Uz.  The

resulting hydrid curve resembles Fig. 5 of Schmitt (1981), albeit a factor of

30 lower.
























