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Abstract 

Salt-finger convection is now widely recognized as an important mechanism for 

mixing heat and salt both vertically and laterally in the ocean. This article reviews 

numerical simulations of salt-finger. Salt-fingers were first produced in the laboratory 

in the mid-1960 when their structure and transport mechanisms were partially 

described. However, rapid diffusion of heat in the laboratory frustrates exact or 

conclusive understanding of many aspects of salt-fingers. Numerical simulation of 

salt-finger began in the 1980’s. The rapid development of computational technology 

has brought great improvements in our understanding of salt-fingers. However, fully 

3-D simulations that resolve all the scales present in salt-fingering, particularly in an 

oceanic environment where internal waves and turbulence are confounding influences, 

pose many more challenges for the future. 
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1. Introduction 

Since the discovery of double-diffusive convection by Stommel, Arons & 

Blanchard (1956), "evidence has accumulated for the widespread presence of 

double-diffusion throughout the ocean" and for its "significant effects on global 

water-mass structure and the thermohaline convection" (Schmitt, 1998). The 

salt-fingering form of double-diffusion has particularly attracted interest because of its 

peculiar long thin cell structure and enhancement of the diapycnal transport of heat 

and salt, even when the net density gradient is stable. Furthermore, much of the upper 

kilometer of the ocean has conditions favorable for salt-fingering, namely warm salty 

water overlying cooler fresher water. Kluikov and Karlin (1995) suggested that 

two-thirds of world ocean is favorable for fingering convection. For example, in the 

tropics, surface evaporation exceeds precipitation and heating exceeds cooling, 

producing these conditions. In contrast, the diffusive convection form of 

double-diffusion is commonly found in polar water where cool fresh water overlies 

warmer saltier water. 

Salt-fingering has been investigated both theoretically and experimentally. 

Theoretical analysis of salt-fingers was first considered by Stern (1960). Its 

subsequent developments are summarized by Kunze (2003) in this issue. 

Salt-fingering laboratory experiments were first conducted by Turner and Stommel 

(1964). Subsequent works are summarized by Schmitt (2003) in this issue. Analytical 

and modeling efforts have focused on the onset and stability of salt-fingers, their 

diapycnal heat and salt transports, layer formation, and interaction with internal waves 

and shear-driven turbulence. Governing parameters, vertical and horizontal scales for 

fingers, a laboratory 4/3 power law for heat and salt fluxes, a flux ratio, and stability 
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criteria (e.g., Stern number (Stern, 1969; Holyer, 1981)) have resulted from this 

research.  

These results were at first difficult to apply to the ocean because sensors were too 

crude to detect salt-finger microstructure. With the introduction of precise CTD, 

shadowgraph and microstructure sensors on towed bodies and profilers, improved 

information about vertical and horizontal ocean microstructure has accumulated.  

These measurements have revealed both agreement and contradictions with respect to 

the expected finger structure, heat and salt fluxes, and fingering layer thickness. Many 

of the discrepancies may be due to the fact that a majority of experiments have been 

conducted using sugar and salt, with sugar diffusing slower than salt. The sugar-salt 

system has a Prandtl number of 1000 compared to the oceanic molecular Prandtl 

number of 7. An additional problem has been conducting laboratory experiments over 

a wide parameter range.   

The direct numerical simulation of salt-fingers can overcome some of these 

limitations. Piacsek and Toomre (1980) first successfully produced 2-D salt-fingers 

numerically. Their computational domain was crude by modern standards. With the 

development of high-performance computers, the details of fingers and the resulting 

turbulent motion are now much better resolved. These outputs are now available to 

improve our knowledge directly. In the following sections, we will review these 

efforts and discuss future numerical simulations that are needed.   

 

2. Two-dimensional modeling of salt-finger convection 

Following Piacsek and Toomre (1980), Piacsek, Brummell & McDonald (1988), 

Shen (1989), Whitfield, Holloway & Holyer (1989), Shen and Veronis (1991), Shen 
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(1993), Shen (1995), Shen and Veronis (1997), Stern and Radko (1998), Özgökmen, 

Esenkov & Olson (1998), Özgökmen and Esenkov (1998) and Merryfield and Grinder 

(unpublished) have all conducted numerical simulations of two-dimensional 

salt-fingers using the same vorticity, heat and salt equations. Following Shen and 

Veronis, we take x  as horizontal and z  as vertically upward. The non-dimensional 

equations are:  
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1980; Shen, 1989; 1993), T∆  and S∆  can be defined as the property differences 

between these homogeneous layers. When background temperature and salinity fields 

are continuously (linearly) stratified (Whitfield et al., 1989; Shen, 1994; Shen and 

Veronis, 1997; Stern and Radko, 1998; Özgökmen et al. 1998; Merryfield and Grinder, 

unpublished), they are defined as the difference between the top and bottom values. 

Using these property contrasts, one can define a density ratio STR ∆∆= βαρ / , 

which characterizes salt-finger behavior. For 21 << ρR , salt-finger growth rates are 

large and salt-fingers are thought to actively transport heat and salt in the ocean. The 

thermal and saline Rayleigh numbers are related by ST RRR ⋅= ρ . We can also define 

the flux ratio of the heat- and salt-flux contributions to the buoyancy-flux 

)(/ ρβαγ RfFF ST ==  where SF  and TF  are the diapycnal salt and heat fluxes. 

The length scale d  was taken as the height of the fluid layer in the stability analysis 

of Baines and Gill (1969). However, Shen and Veronis (1997), Stern and Radko 

(1998) and Merryfield and Grinder (unpublished) used the width of the fastest 

growing finger ( ( ) 4/1
zT Tgd νκ= ) as the characteristic length scale because faster 

diffusion of heat than salt is essential to salt-fingers. With the introduction of such a 

length-scale, the characteristic timescale is defined as Td κ/2 , and the velocity scale 

as dT /κ . Özgökmen et al. (1998) used the width of the computational domain as the 

length-scale and viscosity instead of heat diffusivity. They introduced the Schmidt 

number 
S

Sc
κ
ν= in the salt equation. Another important parameter in Table 1 is the 

Stern number. The Stern number is a criterion that governs the stability of fingers 

interacting with a large-scale internal wave field (Stern, 1969). When the net vertical 

buoyancy flux which feeds the internal waves exceeds the viscous dissipation, 

salt-fingers were argued to become unstable. The critical value was defined as 1/3 for 

steady fingers by Holyer (1981). Kunze (1987) used a finger Richardson number 
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constraint that proved equivalent to the Stern number. These stability analyses were 

applied to explain finger fluxes, flux ratios and interface thicknesses in the real ocean 

(Hebert, 1988; Schmitt 1988).  

Numerical simulations have been conducted by using various combinations of the 

non-dimensional parameters (Table 1) to produce fingering, and examine theoretically 

derived salt-finger flux laws and stability criteria. The parameters used in the 

experiments cited above are summarized in Table 2. In the following chapters, we will 

briefly describe the results of each calculation. 

 

1) Piacsek and Toomre (1980):  

Piacsek and Toomre (1980) did not non-dimensionalize their equations. They used 

σ =6.8, τ =0.01 (heat-salt system), ρR = 3,5 and 7. Their domain was 1.25 cm or 

2.5 cm wide and 2.50 cm or 5.00 cm high. Grid spacing was 0.02 cm in both the 

vertical and horizontal so that their grids with 64× 128 or 128× 256. Their simulations 

were initialized with two homogeneous layers separated by a sharp 

fingering-favorable interface. Heat- and salt-fluxes were imposed at the upper and 

lower boundaries while lateral boundaries were periodic. Their simulations resolved 8 

fingers (Figure 1) and clearly reproduced the blobs at the tips of the fingers seen in 

laboratory heat-salt experiments. Faster diffusion of heat results in a smooth linear 

profile while slower diffusion of salt creates a homogeneous salinity profile in the 

finger region. These simulations did not reach an equilibrium state. They exhibited a 

linear dependence of the flux ratio γ  on the density ratio ρR , not in agreement with 

laboratory experiments. The authors attributed this discrepancy to the absence of 

convecting layers above and below fingering layer, which may play an important role 

in the stability of fingers. In the following paper (Piacsek et al., 1988), they attempted 
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to build multi-layers and considered both salt-fingering and diffusive-layering 

situations, and showed that the layers didn't get beyond 3 layers. 

 

2) Whitfield et al. (1989): 

In the experiments of Whitfield et al. (1989), the Prandtl number 103 ≤≤ σ  and 

the Lewis number 5.01.0 ≤< τ , so they simulated neither heat-salt nor 

sugar-salt-fingers. The inverse buoyancy frequency 1−N  was used as a time scale 

and 2/1)/( NTκ  as a length scale, so the Rayleigh numbers shown in Table.1 did not 

explicitly appeared in their analysis. They investigated 5 cases spanning 

5.21.1 << ρR , using a fingering-favorable background density structure with 

uniform stratification of faster (T) and slower (S) diffusing components. Steplike T 

and S perturbations were imposed as initial conditions. Boundary conditions were 

periodic in both horizontal and vertical. Grids were 128× 256 and 256× 256. In the 

coarse grid case, 6 fingers were resolved (Figure 2). These simulations reproduced 

blob structures. But the flux ratio did not agree with either theoretical (Kunze, 1987) 

or laboratory (Schmitt, 1979a; Griffiths and Ruddick, 1980; McDougall and Taylor, 

1984) predictions. The authors attributed this discrepancy to the mechanisms that 

govern salt-finger stability. The Stern number of their simulations was large so that 

collective instability, or equivalently shear instability, did not appear to apply to their 

fingers. They concluded that this might be an artifact of the computation. 

 

3) Shen (1989;1993;1995), Shen and Veronis (1990;1997) 

Shen has made a tremendous contribution to understanding salt-finger dynamics 

through numerical simulations. Hereafter, we shall abbreviate his papers as Shen89, 
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Shen90, Shen93, Shen95 and Shen97.  . 

As was the case in Whitfield et al. (1989), the Prandtl and the Lewis numbers in 

Shen 89 01.0,1 == τσ , 5.0,1 == τσ  and 5.0,2 == τσ  were set to resolve 

viscous and diffusive time- and length-scales fully, so did not correspond to a realistic 

fluid. The density ratio was set to 2 in all simulations. Density Rayleigh number was 

used and set to 22.3, 25.0 and 8.8. 2-D simulations were carried out on 256× 258 grids 

with periodic boundary conditions in the vertical and horizontal. The simulations were 

initialized with a small white-noise perturbation applied to the sharp interface 

separating two homogeneous layers. 

The evolution of temperature and salinity fields is shown in Figure 3. Many fingers 

are present and the blob structures evident in previous simulations are seen in the 

salinity field here as well. However, subsequent development differs from past 

simulations. After the onset of mushroom plumes, narrow fingers and convective 

plumes co-exist with the fingering interface remaining at mid-depth. This is consistent 

with the previous laboratory experiments. 

The evolution of density, temperature and salinity profiles are shown in Figure 4.  

The fingering interface is identifiable as the layer of steep gradients. Due to the 

differing molecular diffusivities of heat and salt, the salinity profiles have a rather 

weak gradient with more small-scale structure than temperature profiles. Shen89 

attributes these differences to the fact that convecting fluxes due to fingers dominate 

the salinity interface while molecular diffusion dominates the temperature interface. 

The most interesting aspect of this simulation is the transition to turbulent convection 

at the edge of the fingering interface while the interface continues to thicken. This is 

caused by frequent density inversions at the edge of the interface. The Stern number 
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exceeds 1/3 (Holyer, 1981) in all three cases. Shen89 concluded that the 

Rayleigh-Taylor type instability occurred at the edge of the fingers. 

In Shen 93, the numerical simulations were extended to the oceanic range of 

01.0,7 == τσ  and ρR  spanned 1.2 to 4.0. The thermal Rayleigh number was 

chosen to resolve 24 fingers in the numerical domain of 512× 512 grid points. Initial 

stratification was as in Shen89 and again boundary conditions were periodic in the 

vertical and horizontal. These simulations investigated the laboratory and analytical 

flux laws. The flux ratio, the proportionality constant C  of the 4/3 flux law, and the 

Stern number from these simulations and previous laboratory experiments are shown 

as a function of density ratio in Figure 5. Functional dependences were not derived 

but numerical and laboratory values agree fairly well. The flux ratio agrees with 

Schmitt's (1979b) fastest-growing finger model, but not Howard and Veronis's (1987) 

steady maximum buoyancy-flux prediction. On the other hand, the square wave-like 

structure of the horizontal salt field agrees with Howard and Veronis (1987) rather 

than Schmitt (1979b). In Schmitt's model, the mean vertical salt gradient exists 

because of salt diffusion across finger cells and a sinusoidal wave form is assumed 

while, in Howard and Veronis (1987), lateral diffusion of salt is negligible and a 

square wave form is assumed for analytic simplicity. To show that the maximum 

vertical flux hypothesis is not appropriate, Shen93 proposed a model in which the 

mode that maximizes the amplitude of the vertical finger velocity is preferred. The 

calculated Stern numbers show the same trend as in laboratory experiments but are 

slightly smaller. 

Shen95 investigated the role of temperature and salinity stratification in more detail, 

considering a thick stratified layer with uniform temperature and salinity gradients 



 10 

and including vertical diffusion of heat and salt by these gradients. The Rayleigh 

number based on the vertical scale is large. Density ratios of 2-8 were considered. 

Other parameter ranges and domain configurations were as in Shen93. The resulting 

growth of fingers and salt-fluxes is limited by instability of finger cells. An 

equilibrium state was achieved in which the energy dissipation was balanced by the 

buoyancy forcing. Equilibrium fluxes were proportional to the mean background 

gradients, in contrast to Shen93 where fluxes depended on the inverse 1/2 power on 

salinity gradients of finite extent.  

Shen97 summarized previous work on oceanic 2-layer heat-salt systems. They 

produced salt-fingers for various thermal and saline Rayleigh numbers for density 

ratios of 1.5-3 in a 512× 1024 numerical domain. Other conditions were as in Shen89.  

Their flux ratios were high for saline Rayleigh numbers 61083.1 ×=SR  and 

5.1=ρR , in agreement with laboratory experiments by Turner (1967) and Schmitt 

(1979a). When the Rayleigh numbers were low, they found spatial period-doubling 

(Figure 6). The fingertip blob structures observed in previous numerical and 

laboratory experiments were also found in these simulations which resolved 8 finger 

pairs. At the intruding tip of each finger, an umbrella-shaped structure formed and 

spread laterally. However, interactions between these blobs inhibited lateral spreading. 

Wavy motion then appeared that accelerated sandwiched blobs, thinning their necks 

until a new blob formed in the upper or lower layer. This spatial period-doubling is 

analogous to the upscale energy cascade observed in 2-D turbulence. Period-doubling 

occurred three times in their simulation domain. Large-scale eddies formed in the 

upper and lower layers.  
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4) Özgökmen et al. (1998):  

In this simulation, the Prandtl and Lewis numbers were chosen to be 

σ =100,τ =1/30, equivalent to a starch-sugar system in order to adequately resolve the 

salt-fingers in a 301× 113 computational domain. They used a density ratio ρR =1.6 

and thermal Rayleigh number 7106 ×=TR  with initially uniform vertical gradients. 

The top and bottom boundary conditions differed from previous simulations in being 

free-slip and zero mass-, heat- and salt-flux, equivalent to a closed box or laboratory 

tank. Initially, sinusoidal perturbations are imposed with wavelengths larger than 

steady fingers based on the initial thermal Rayleigh number in order to speed up the 

numerical calculation. The evolution of the stream function, temperature and salinity 

fields are shown in Figure 7 as well as horizontally-averaged vertical profiles of 

temperature, salinity and density. 

At first, large-scale fingers grew at mid-depth. The top and bottom boundary 

conditions homogenize temperature and salinity near the upper and lower boundaries 

(Figure 7a). As time progresses, smaller scale fingers tipped by blobs 

appear with a width scale consistent with the steady finger model. The vertical 

domain of the fingers thins as large-scale convective motions near the top and bottom 

homogenize the fluid, forming an equilibrium of well-mixed layers sandwiching a 

high-gradient fingering interface. Throughout, the temperature profile is smoother 

than the salinity profile. Both salinity and density inversions are evident as the upper 

and lower layers mix (Figure 7b). At the latter stage, pairing of finger blobs 

(period doubling) occurs and detached fingers form umbrella-like plumes. The density 

gradient in the fingering interface increases, indicating that the buoyancy-flux is 

countergradient as also observed by Shen89, Shen95 and Shen97. 
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The equilibrium state is also confirmed by the time evolution of the temperature 

difference between the upper and lower layers. While the salinity difference decreases 

continuously due to the efficient finger transport of salt, temperature differences 

weaken only through vertical molecular diffusion.  

Focusing on the instability of fingers and subsequent blob formation, Özgökmen et 

al. (1998) calculated the Stern number. Initially, the Stern number increases rapidly 

until it attains its maximum value when the homogeneous convective layers form near 

the upper and lower boundaries. It then gradually decreases below the 'critical value' 

of 1/3 during equilibrium. While this behavior seems to be explicable by the 

collective instability mechanism, the numerical results show that blob formation and 

detachment exist even when the Stern number exceeds the critical value. The authors 

concluded that the instability mechanism for controlling finger fluxes remains 

unknown. The vertical flux ratio and 4/3 power law were also examined. The flux 

ratio achieves an equilibrium value of about 0.55, consistent with the predictions of 

Schmitt (1983). A 4/3 power law is consistent except during the initial and final stages 

of the simulation when equilibrium is not maintained. 

Özgökmen and Esenkov (1998) examined the effect of nonlinearity in the equation 

of state by adding quadratic dependence of density on temperature. They showed that 

the stabilizing effect of temperature is enhanced, and as a result, the growth of 

salt-fingers is delayed. Once the salt-fingers are established, the nonlinear effect 

increases the buoyancy effect acting on the downward-going fingers more than it 

decreases that acting on upward-going ones. This effect results in narrower and faster 

growing downward fingers than upward ones. 

 

5) Merryfield and Grinder (unpublished) 
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In this simulation, the oceanic heat-salt system (σ =7,τ =0.01) is examined with 

density ratio ρR  ranging from 1.25 to 20 so as to compare the diffusivities of heat 

and salt with oceanic observations. Background temperature and salinity gradients are 

uniform, and doubly-periodic boundary conditions are applied. Grid sizes are varied 

from 256 × 256 to 512 × 512 for the temperature field and from 512 × 512 to 

1024× 1024 for the salinity field according so as to fully resolve the salinity field. In 

their calculation, vertically elongated salt-fingers are developed, and broken up into 

blobs by a secondary instability (not by collective instability), as seen in the previous 

numerical experiment cited above. They also showed that fingering structure is 

disordered at low ρR , which agrees with laboratory observed fingers (e.g. Shirtcliffe 

and Turner, 1970, see Figure 8). Spatially and temporally averaged effective heat and 

salt diffusivities are compared with those obtained at the NATRE site (St. Laurent and 

Schmitt, 1999) and in the C-SALT area (Fleury and Lueck, 1991) in Figure 9. 

Numerically obtained diffusivities are in good agreement with those obtained at 

NATRE, but larger than those at C-SALT. This tendency is also shown in the 

horizontal temperature gradient spectra (Figure 10). The shapes of the spectra 

resemble each other, but the power levels of the numerical spectra are larger than the 

observed one at all wave numbers. These discrepancies are attributed to the fact that 

presence of shear should affect the strength of salt-fingering at the C-SALT site 

irrespective of the low-density ratio. Merryfield and Grinder (unpublished) also 

compared the density flux ratio γ  with the fastest growing finger model of Schmitt 

(1979b) (Figure 11). The tendencies show fairly good agreement, but the functional 

dependence on ρR  is not given explicitly. The Stern number criterion is also 

examined. It shows that as ρR  is decreased towards unity, the Stern number 



 14 

becomes large, as does the finger Reynolds number. This corresponds to an enhanced 

tendency of fingers to break up into blobs at low ρR (see Figure 8). The temperature 

variance spectrum for ρR =2 shows fairy good agreement with that reported by 

Gargett and Schmitt (1982).  

 

3. Three-dimensional modeling of salt-finger convection 

The obstacles to reproducing salt-finger convection in three dimensions are 

considerable. Resolving salt-finger structure in 3-D is difficult and there are few 

laboratory visualizations with which to compare the results. The few laboratory 

observations of the plan-form structure reveal regular rectangular cell structures that 

resemble classical Rayleigh-Benard cells (Shirtcliffe and Turner, 1970) or else sheets 

in the presence of uniform vertical shear (Linden, 1974). Osborn (1991) observed 

asymmetric salt fountains in the ocean, revealing the potential relevance of 

three-dimensional structure. Using 3-D linear theory, Schmitt (1994) found a rich 

variety of salt-finger plan-forms with the same growth rate, including an asymmetric 

finger similar to Osborn's observation.  

Motivated by this result, Nagashima et al. (1997) performed 3-D numerical 

simulations of salt-fingers in the heat and salt system, using recently developed 

software called α -FLOW in which a linearized equation of state is used in 

conjunction with the momentum, heat and salt equations. A numerical domain of 

1.25cm by 1.25cm by 5cm high is used. All boundaries are slippery and allow no 

fluxes. The box is 64× 64× 64 grid points with grid sizes of 0.2 and 0.8 mm in the 

horizontal and vertical, respectively. The upper (lower) half of the box is occupied by 

warm and salty (cool and fresh) water. Initially, random disturbances are imposed just 

below the interface. Numerical simulations were carried out for three cases. Case 1 
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has the same initial temperature and salinity differences as Piacsek and Toomre (1980), 

and in cases 2 and 3 salinity differences are set to be 8 and 16 times larger than that of 

Case 1 to illustrate the dependence of finger scale and salt-flux on salinity difference. 

Small-scale undulations are found in and near the interface. After a while, salt-fingers 

of preferred horizontal scale develop as shown in Figure. 12. Mushroom structures 

from at the tips of the fingers are seen. In the horizontal plane corresponding to the 

initial position of the interface (Figure 13, left), irregular salt-fingers are apparent in 

salt concentration, consistent with a rich variety of finger forms (Schmitt, 1994). In 

Case 1, the preferred horizontal scale estimated by 2-D Fourier analysis is 3.72 mm, 

or 0.3 of the domain width, consistent with the 2-D model of Piacsek and Toomre 

(1980). In Case 3 (Figure 13, right), horizontal scales are smaller than in Case 1, only 

1.86 mm. The scale of the fingers depends on the initial temperature difference as 

4/1T∆ , consistent with theory (Stern, 1960; Schmitt, 1981). The maximum salt-flux 

depends on salinity difference 3/4S∆ . The Stern number was not estimated in this 

study. Structures resembled those in 2-D simulations, with blobs (mushrooms) formed 

at the finger tips. However, these blobs did not break up or detach as in Shen89, 

Shen97, Özgökmen et al. (1998) and Merryfield and Grinder (unpublished) . No 

well-defined large-scale structures were observed even though the flux measurements 

indicate development of an equilibrium state. Shen97 suggest that period-doubling 

would not occur in three dimensions, and that overturning convection would be more 

localized. Period-doubling and large-scale eddies were not observed by Nagashima et 

al. (1997). These features need more investigation. 

Recently, Stern and Radko (1998), Radko and Stern (1999) and Radko and Stern 

(2000) tried to simulate salt-finger convection in two- and three-dimensions. A high 
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Prandtl number (σ 310≈ ) sugar and salt system is considered; they neglect the 

nonlinear terms in the momentum equation, but not in the temperature and salinity 

equations. They also investigate the behavior of salt-fingers at the marginally stable 

limit when the density ratio ρR  is nearly equal to the Lewis number τ . In this 

context, they introduced a new parameter defined as 1)( 1 −= −ρτε R . In their 

calculation, background temperature and salinity gradients are uniform and remain 

unchanged with time, and temperature perturbation is initialized using rolls or square 

cells for horizontal planform: 

)cos()sin(2.0 lykxmzT +=′     for roll and  

)cos()cos()sin(2.0 lykxmzT =′   for square cell, 

where µ=== 00 /,2/ kmklk . µ  is the aspect ratio defined as the ratio of the 

horizontal wave-length of the fastest growing finger to the maximum vertical 

wave-length superposed on the domain. 

In the case where the computational domain is not bounded (periodic boundary 

condition in three dimensions), Radko and Stern (1999) reproduce salt-fingers with 

various aspect ratios. They showed that the initial two-dimensional finger is replaced 

by three-dimensional fingers having planforms consisting of three-dimensional square 

cells and two-dimensional rolls (Figure 14). This three-dimensional finger reaches a 

statistically steady state having larger heat flux than a two-dimensional finger with 

same aspect ratio (Stern and Radko, 1998). Vertical structure shows the dominance of 

up and down going finger structure (vertical wave-number is 0, they called this mode 

the elevator mode), and the existence of three dimensional round eddies having 

vertical scales comparable with the basic finger width scale (Figure 15). They 

proposed a mechanism for equilibrating the elevator (salt-fingering) mode in 
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three-dimensions by a triad energy transfer between round eddies (basic and 

sub-harmonics) and the elevator mode. Namely, small-scale waves seen in Figure 15 

transfer heat and salt laterally between up and down going (elevator mode) fingers, 

and equilibrate the growth of fingers. Extended to small values of the density ratio, 

their calculations showed the systematic increase of heat flux with decreasing density 

ratio, and a flux ratio in quite good agreement with that obtained by Griffiths and 

Ruddick (1980) for density ratios ranging from 2.6 to 1.8.   

An additional experiment was done with the calculation domain bounded by 

horizontal rigid and slippery surface with constant temperature and salinity, in order to 

compare with the laboratory run-down experiments (e.g. Griffiths and Ruddick, 1980). 

Motion was initiated as two-dimensional rolls, and showed the transition from 

two-dimensional rolls to three-dimensional square cells in steady state. The planform 

shows very regular square cell structure and a vertically coherent elevator mode with 

thin boundary layers on top and bottom. Density flux ratio again showed fairly good 

agreement with Griffiths and Ruddick (1980).  

The behavior of three-dimensional fingers and the role of the boundary layers are 

investigated in more detail by Radko and Stern (2000). Horizontal distributions of the 

temperature field at mid-depth (Figure 16a) and near the boundary (Figure 16b) show 

that the square cell structure is distinct near the boundary, with mixed roll and square 

cell structure at mid-depth. Vertical temperature structure (Figure 16c) shows the 

existence of boundary layers near top and bottom. Those layers were not seen in the 

unbounded model. The transition (three-dimensional instability of the boundary layer) 

from two-dimensional rolls to three-dimensional square cells first occurred near the 

boundary, then proceeded to mid-depth (Figure 17). This tendency is enhanced when 
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the density ratio is sufficiently small ( ρR <2) and the local thermohaline Rayleigh 

number based on the thickness of boundary layer exceeds the range of 1000-2000 

(Figure 18). Three dimensional structure generated near the boundary penetrates much 

more of inner region much more in the case of high Rayleigh number (Fig.18b). The 

proportionality constant C  of the 4/3 flux law as determined by the numerical 

calculations is compared with asymptotic ( 0→ε , which means τρ /1→R ) analysis 

in Fig. 19a. Fig. 19b shows a similar comparison for the experimental data of Taylor 

and Veronis (1996). Except at smaller values of ρR (ε  becomes )1(O , and the 

asymptotic approximation fails at this limit), the agreement among asymptotic curve, 

numerical results and laboratory results seems satisfactory.  

 

4. Recommendations 

As reviewed briefly here, two-dimensional simulations of salt-fingers showed fairly 

good agreement with laboratory results for flux laws, 4/3 power law, horizontal scale 

and structure. However, the stability of salt-fingers is itself not yet fully understood. 

Since Stern (1969) proposed a collective instability theory, salt-finger instability has 

been investigated in various contexts (Holyer, 1981; Veronis, 1987; Howard and 

Veronis, 1987). The Stern number criterion seems to be sufficient to determine 

instability of fingers, with possible additional minor dependence on density ratio, 

Prandtl number and Lewis number (Shen, 1993). However, these studies suggest that 

collective instability is not the sole mechanism of salt-finger instability, but only one 

of a myriad of possible instability modes. In fact, Shen’s series of experiments and 

those of Özgökmen et al. (1998) revealed that both interactions among the blobs that 

form at finger tips and disorganized motions are important for secondary instability of 

fingers, and the formation of large scale convective motions. However, the large scale 
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convective motion that forms in the homogeneous mixing layers may be induced by 

different processes in these experiments since boundary conditions are periodic in 

Shen (1995), Shen (1997) and Merryfield and Grinder (unpublished) but insulated and 

slippery in Özgökmen et al. (1998). Moon (1998) investigated numerically the 

mechanism of the generation of a large convective cell through interactions among 

vortex pairs in an ideal situation in which the viscosity and density variation are 

neglected. He showed that large scale convection results from the collision of finger 

tips and should be accompanied by a small scale vortex pair moving in the opposite 

direction. Recent three-dimensional simulations by Radko and Stern (1999, 2000) 

revealed the importance of the boundary layer instability near the rigid surface in the 

sugar/salt system, and elucidate the transition from two-dimensional rolls to square 

cells. 

As to the finger instability itself, the growth of instability to finite amplitude can 

bring about equilibration of finger fluxes when the thickness of the fingering zone or 

interface is much greater than the finger cell width (Shen, 1995; Stern and Radko, 

1998; Merrifield and Grinder, unpublished). This instability of fingers results in 

transition of finger structure from laminar to turbulent at low density ratio as is often 

seen in the laboratory. Since salt-finger theories have traditionally assumed coherent 

laminar finger structure, this transition suggests that new theories for turbulent 

salt-finger should be developed, and examined by the numerical results cited above. 

In the oceanic context, Schmitt (1988) found that the Stern number criterion still 

has importance. He showed that calculated buoyancy flux and salt eddy diffusivity 

from C-SALT data based on Stern number criterion well agreed with those from 

dissipation rates by direct microstructure measurements. Hebert (1988) used Kunze's 
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(1987) thick and thin interface models with a Richardson number criterion equivalent 

to the Stern number to show that the thick interface model in which salt-fingers do not 

extend across the entire vertical extent of the fingering-favorable layer gave 

reasonable estimates of finger fluxes in a Meddy. However, the laboratory 4/3 flux 

law overestimates fluxes inferred from bulk budgets in both cases. As was noted in 

the beginning of this section, laboratory flux laws and 4/3 power law are well 

reproduced by the numerical results, but these discrepancies suggest that there may be 

fundamental differences between the experimental setups and the real ocean, 

including stratification, background turbulence, vertical shear, etc. In fact, the thermal 

Rayleigh numbers used in numerical experiments ranged from )10( 2O  to )10( 7O , 

while the oceanic value determined from C-SALT data (Gregg, 1988) is )10( 13O . 

This point should be examined in future numerical experiment. Thus our first 

recommendation is: To conduct two- or three-dimensional numerical simulations 

focusing upon the interaction among salt-finger and turbulence, velocity shear and 

internal wave field. 

As pointed out above, blobs and their interactions are essential to finger structure, 

but might be different in two-dimensional and three-dimensional simulations, so that 

the resulting finger instability might be different in these two cases. In Schmitt's 

(1994) linear model of triangular and asymmetric fingers, he suggests that a rich 

variety of planforms may be possible with the same growth rate. Radko and Stern 

(1999, 2000) gave an interesting insight to these mechanisms, however, their 

experiments were conducted in the sugar/salt system, and the non-linear terms in the 

momentum equation was neglected. In other three-dimensional experiments by 

Nagashima et al. (1997), focus was on the early development of fingers in heat/salt 
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system, and not their end state.  

Therefore, our second recommendation is 

• To conduct three-dimensional numerical modeling of salt-fingers under suitable 

conditions (Prandtl, Lewis and Rayleigh numbers having oceanic values), and to 

investigate the transition mechanism from two-dimensional to three-dimensional 

structure. 
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Figure Captions 

Figure 1 Evolution of salt-fingers together with temperature and salt profiles. Salinity 

field is presented on the left. In this case, ρR  is taken to be 3. (Piacsek and 

Toomre (1980)) 

Figure 2 Evolution of salt-fingers from Whitfield et al. (1989). Salinity field is 

presented. In this case, ρR  is taken to be 1.33, 3=σ , 3/1=τ . 

Figure 3 Evolution of salt-fingers. Temperature and salinity fields are presented. In 

this case, 10/1,1 == τσ , and ρR  is taken to be 2. (Reprinted with permission 

from Shen, C.Y., 1989, The evolution of the double-diffusive instability: 

Salt-fingers. Physics of Fluids, A1(5), 829-844.copyright 1989, American Institute 

of Physics). 

Figure 4 Evolution of domain-averaged density(left), temperature(right, solid lines) 

and salinity(right, dashed lines) profiles. (Reprinted with permission from Shen, 

C.Y., 1989, The evolution of the double-diffusive instability: Salt-fingers. Physics 

of Fluids, A1(5), 829-844.copyright 1989, American Institute of Physics). 

Figure 5 Flux ratio Rf , C  and Stern number A  as functioned ρR . Solid diamonds 

are from the numerical experiment. Other symbols are from laboratory experiments 

(Schmitt, 1979a; Taylor & Bucens, 1989; Turner, 1967; McDougall and Taylor, 

1984). (Reprinted with permission from Shen, C.Y., 1993. Heat-salt finger fluxes 

across a density interface. Physics of Fluids, A5(11), 2633- 2643. copyrighgt 1993, 

American Institute of Physics). 

Figure 6 Contour plots of temperature (upper left), salinity (upper right),density 

(lower right) and stream function(lower right). Domain size is 22cm×44cm.(Shen 

and Veronis, 1997).(Reproduced by permission of American Geophysical Union) 
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Figure 7 Stream-function Ψ (Top left of each three pair of contour lines), temperature 

T  (top middle) and salinity S  (top right) fields, and vertical profiles of 

temperature T  (lower left), salinity S  (lower middle) and density ρ  (lower 

right) for (a) t= 0.3.(b) t=0.5 and (c) t=1.7 (Özgökmen et al., 1998). 

Figure 8 Instantaneous salinity field for equilibrated salt fingers for ρR =1.25,1.5,4 

and 15. (Merryfield & Grinder, unpublished). 

Figure 9 Comparison of vertical diffusivities of salt ( Ks ) and heat( TK ) obtained by 

numerical simulation (solid curves, Merryfield & Grinder, unpublished) and 

observations (△; NATRE site, St. Laurent and Schmitt, 1999; C-SALT, Fleury & 

Lueck, 1991). 

Figure 10 Comparison between horizontal temperature gradient spectra for ρR =1.5 

(heavy solid line) and ρR =2.0 (thin solid line) from the numerical calculations of 

Merryfield & Grinder (unpublished) and that obtained by Fleury & Lueck (1991) 

for ρR =1.6 (dashed line). (). 

Figure 11 Density flux ratio γ  is plotted against ρR  (solid circles with error bars) 

together with theoretically obtained flux ratio for the fastest growing salt finger 

(continuous curve, Schmitt, 1979a). Also shown by open circles are estimated from 

Shen (1995). (Merryfield & Grinder, unpublished). 

Figure 12 Development of fingers (left) and magnified view of the mushroom 

structure (right). (Nagashima et al.,1997). (Reproduced by permission of Modelling 

and Simulation Society of Australia and New Zealand). 
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Figure 13 Plan view of salt fingers at middepth. The salinity difference S∆ of Case 3 

(right) is 16 times greater than that in Case-1 (left). (Nagashima et al., 1997). ). 

(Reproduced by permission of Modelling and Simulation Society of Australia and 

New Zealand) 

Figure 14 Horizontal temperature cross section obtained by Radko and Stern (1999). 

Solid and dashed lines correspond to high (down-going finger) and low (up-going 

finger) temperature area, respectively.  

Figure 15 Vertical temperature cross section by Radko and Stern (1999). Solid and 

dashed lines are the same as in Figure 14. 

Figure 16 Horizontal cross-section of temperature at a) mid-depth and b) near the 

boundary. Vertical cross section of temperature is also shown on the right (Radko 

and Stern, 2000). (Reprinted with the permission from Cambridge University 

Press). 

Figure 17 Time sequences of transition from rolls to square cell. Left panels; 

Horizontal cross sections of temperature field at mid-depth. Right panel; Same as 

on the left but near the upper boundary (Radko and Stern, 2000). Times shown are 

(a) t=0, (b) t=400 and (c) t= 4600. (Reprinted with the permission from Cambridge 

University Press). 

Figure 18 Vertical temperature cross section in the boundary layer near z=H for 

relatively (a) small and (b) large Rayleigh number (Radko and Stern, 2000). 

(Reprinted with the permission from Cambridge University Press). 
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Figure 19 Proportionality constants C  of the 4/3 flux law, plotted against density 

ratio. (a) Asymptotic analysis (solid curve) is compared with the results of 

numerical calculations (symbols). (b)Experimental results by Taylor and Veronis 

(1996) (symbols) are compared with asymptotic analysis (solid curve, same as in 

Figure 19a). Other laboratory results are averaged and is shown by the straight line 

(Radko and Stern, 2000). (Reprinted with the permission from Cambridge 

University Press). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 Governing parameters 

Parameters definitions 

Prandtl number 
Tκ

νσ =  

Thermal Rayleigh number 
νκ

α

T
T

dTg
R

3∆
=  

Saline Rayleigh number 
νκ

β

T
S

dSg
R

3∆
=  

Lewis number 
T

S

κ
κτ =  

Schmidt number 
S

Sc
κ
ν=  

Density anomaly ratio 
S

T
R

∆
∆

=
β
αρ  

Stern number 2N

FgFg
tS TS

ν
αβ −
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Table 2 Governing parameters for selected two-dimensional experiments. Note that 

7=σ  and 100/1=τ  cases are heat/salt-finger experiments. 

 
Tκ

νσ =  
T

S

κ
κ

τ =  
S

T
R

∆
∆=

β
αρ  

νκ
α

T
T

dTg
R

3∆
=  N  

Piacsek and  

 Toomre(1980) 
6.8 1/100 3.5, 7 610  2-layers 

Whitfield et al. 

(1989) 
3, 10 

1/10,1/3

,1/2 

1.1-2.5 

(6 cases) 
Not specified Linear 

Shen (1989) 1, 2 1/10,1/2 2 

2102.6 × ,

2109.4 ×  

2105.1 ×  

2-layers 

Shen (1993) 7 1/100 
1.2,1.5,2.0 

2.5,3.0,4.0 
710)0.42.1( ×−  2-layers 

Shen (1995) 7 1/100 
2.0,3.0,4.0, 

8.0 
71033.1 ×  Linear 

Shen and 

Veronis (1997) 
7 1/80 15, 3.0 6

3

1074.2

1054.1

×
−×

 

(5 cases) 

2-layers 

Özgökmen et al. 

(1998) 
100 1/30 1.6 7106×  Linear 

Merryfield and 

Grinder 

(unpublished) 

7 1/100 
1.25-20 

(13 cases) 

6106×   

(for 2=ρR ) 
Linear 

 

 

 

 

 

 












































	Title
	Abstract
	Keywords
	Contents
	Introduction
	Two-dimensional modeling of salt-finger convection 
	Piacsek and Toomre (1980)
	Whitfield et al. (1989)
	Shen (1989;1993;1995), Shen and Veronis (1990;1997) 
	Ozgokmen et al. (1998)
	Merryfield and Grinder (unpublished) 

	Three-dimensional modeling of salt-finger convection
	Nagashima et al. (1997) 
	Stern and Radko (1998)
	Radko and Stern (1999)
	Radko and Stern (2000)

	Recommendations
	Acknowledgements 
	References
	Table 1
	Table 2
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7(a)
	Figure 7(b)
	Figure 7(c)
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19

