Benthic oxygen demand =

sediment respiration = benthic
metabolism

Aerobic demand measured as O, consumption
In cores or in situ

Oxygen is the most efficient electron acceptor

highest AG; The other acceptors are vertically
structured
Electrons are transferred as H' ions

(1/2H, &= H + ¢)
Total metabolism measured as CO, production

CO,/O, rates = respiratory guotient (RQ)
= 0.8 - 1.2 for aerobic respiration
> when anaerobiosis Is present

Convert O, to CO, with RQ, subtract from total
CO, production to partition aerobic vs anaerobic

Sulfate reduction (primary anoxic respiration)
measured with *S incorporation into sulfides
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Vertical structure of electron acceptors
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Schematic diagram ‘of microbial metabolism and cars
bon flow in Halifax Harbor sediments. Only the predoniinant
type of metabolism is listed for the various horizons. This dous

not imply that they are exclusive or nonoveslapping




A summary of biogeochemical processes in
marine sediments
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Inter-relationships between photosynthetic, heterotrophic, and chemosynthetic processes in sediments. Photosynthesis and

puwswswduction only occur in the presence of light. Aerobic metabolic processes: heterotrophic respiration (oxidation of simple reduced
organic compounds with possible reduction of CO,); photosynthesis (reduction of CO, to carbohydrates using H,0 andlight); aerobic
respiration (reduction of oxygen to water with organic compounds as electron donors); aerobic chemosynthesis (oxidation of CH,, H,S,
NH,, Fe**, H, to form organic carbon compounds by fixation of CO,). Anaerobic metabolic processes: anaerobic respiration (oxidized
inorganic end products of aerobic decomposition used as hydrogen acceptors for the oxidation of organic matter), fermentation
(organic compounds used as hydrogen acceptors to produce CO,, H,0 and reduced organic compounds such as lactate, glycollic acid,
H,S, NH,); photoreduction (reduced compounds used to reduce CO, to carbohydrates in the presence of light with H,S, SO,, S, H, or
reduced organic compounds serving as hydrogen donors); anaerobic chemosynthesis (oxidize inorganic compounds H,, H,S, Fe™

NO,” and use energy to reduce CO, to carbohydrates) (redrawn from Fenchel, 1969, with modifications).



Depth (cm)

Sediment redox reactions

Shortage of electron acceptors leads to
negative electrical potential in
'reducing’' sediments measured with

an electrode in mV.

Zero mV is the redox potential discontinuity
Generally means anoxic sediments, but is
not a measure of oxygen

Typical redox potential profiles for two intertidal
sediments: (@) medium sand, (b) fine sand.
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Diffusion limited relative to consumption

Organic loading = excessive consumption =
zero oxygen (e.g. hypereutrophication)

Vertical structure
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Schematic representation of the vertical distribution of some chemical
properties of a typical marine bottom mud. (Modified after Fenchel and Riedl, 1970, from

Marine Biology, vol. 7)
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Reducing sediments and the RPD



Primary form of anaerobic metabolism
due to availability of sulfate

Sulfate reducing bacteria cannot use glucose;
only low chain C compounds like acetate -
Important coupling to fermenters

Reduced product (sulfide) is toxic and
oxidized by O, and by chemoautotrophs

Reduced product is also stored as minerals
(e.g. pyrite)
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Comparisons of oxygen respiration with sulfate reduction. During sulfate
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Schematic diagram illustrating the ecological importance of the sulfur cvele in
concentrating high-quality food near the sediment-water interface.



The Nitrogen Cycle

All POM decomposition and animal excretion yields
ammonia from protein

Ammonia is nitrified to nitrate (chemoautotrophs)

Nitrate is denitrified to ammonia or nitrogen gas
(anaerobic heterotrophs)

N, pathway is a net loss to marine systems
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Processes in the cycling of nitrogen through marine
sediments (redrawn from Wicbe, 1979).



Methods

Fluxes of oxygen and other
solutes are measured directly,
either influxes or effluxes at the
sediment-water interface

Closeup of incubation core
Note stir bar and burrows

Cores in water bath with stirring motors and sampling
ports



Who is respiring?
Partitioning of benthic metabolism - Barents Sea
(Piepenburg et al. 1995 Mar. Ecol. Prog. Ser. 118)
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Profiles are the balance between consumption
and diffusion; these shapes may thus be used to
calculate consumption rates.

but, bioturbation disrupts the profiles
e.g. straightens them and leads to more complex
models
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Flux J = D (dC/dz) where
D is diffusion coefficient, and dC/dz
IS the solute gradient



Bioturbation has a variety of impacts on the
sediment surface and subsurface

Surface structure and rougness (tubes, burrows, mounds)
De-compacted sediment surface and increased porosity
Increased erodibility

Changes in grain size through feeding and pelletization
Deepening of oxygen penetration and the RPD

Changes in solute fluxes



Fauna have a huge influence on the sedimentary
environment via bioturbation, including sediment
texture and its interaction with the sediment column and
BBL. These interactions are known as animal-sediment

relations.

FUNCTIONAL GROUPS OF INFAUNA AND TYPES OF INTERACTIONS®

Ingests or
disturbs by its Filters Predicted
feeding activities larvae Larval type dense
surface or near- from Alters at cO-occuIming
Function group  surface larvae water sediment settlement forms
Deposit-feeding yes no destabilizes surface or burrowing
bivalve : burrowing polychaetes
Suspension-feeding no yes much less than surface none
bivalve deposit feeders
Tube-building yes depends on stabilizes by surface epifaunal
forms feeding attracting algal bivalves and
type mat; destabilizes tube epifauna

by increasing
near-bottom
turbulence;
reduces space
below surface,
increases settling
surface due to
tubes



Tubes and tracks in the deep sea




Surface porosity effects - note easily resuspended
surface
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A sediment-water interface photograph of a typical shallow-water marine mud. The
percent water content as a function of depth below the sediment-water interface is shown to the
right. Note the thin layer of pelletized sediment near the interface. (Compiled from Levinton, 1977)



Sediment sorting by deposit feeders - feeding
and fecal pellets alter grain size
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(a) Vertical reworking of intertidal sediments by the tubeworm, Clymenella
torquata. (b) Change in the vertical distribution of particle sizes as a result of vertical
reworking of the sediment by the tubeworm. (After Rhoads, 1967, with permission from
the Journal of Geology and the University of Chicago Press)
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Burrows, galleries, and deposit-feeding

!

Living positions of some burrowing invertebrates. (a) The burrowing po-
lychaete, Pectinaria, (b) the amphipod, Corophium (c) the polychaete, Abarenicola.
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Cross section of the
sediment showing the feeding position,
surface cone, and overall microtopography
generated by the burrowing sea cucumber,
Molpadia oolitica, in Cape Cod Bay,
Massachusetts. (From Young and Rhoads,
- 1971, reprinted from Marine Biology,
volume 11)
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Animal-sediment relations in the context of
disturbance and succession (originated by Pearson/
Rosenberg/Rhoads

R. C. NEWELL. L. J. SEIDERER AND D. R. HITCHCOCK
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Pictorial diagram showing the ecological succession that characterizes benthic com-
munities through a gradient of emvironmental disturbance. Mote that in highly disrupted
environments (on the left side of the diagram) few organisms may be capable of survival. In
polluted or semi-liquid muds the sediments are colonized by few (resistant) species but which
can attain very high population densities. As the stability of the environment increases, these
opportunistic r-selected species are replaced by increased species variety, including slower-
growing K-sclected species. Finally in environments of high stability the community is domi-
nated by equilibrium species with complex biological interactions between members of the
community. (Based on Pearson & Rosenberg 1978, Rhoads et al. 1978
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Figure 5. An interesting parallel is found be-
tween change in faunal composition over time
after a singular physical disturbance, such as
the dumping of dredge spoil, and that over
distance from a chronic pollutant effluent such
as the blanket of fiber from a cellulose factory.
Immediately after disturbance or close to the

source of pollution, a few species of abundant
and productive polychaete worms are found.
These are followed—in time or space—hy
suspension-feeding or surface-deposit-feeding
molluscs, which are in turn replaced by less
productive species that live deeper in the mud,
feeding on buried detritus and oxygenating the

»

sediment. Pioneering species at or near the
surface may be more available as prey for
foraging fish and crustaceans than deeply
buried species of the mature stage. (Diagram
of faunal changes over distance from pollutant
effluent after Pearson and Rosenberg 1976).



The Benthic Boundary Layer (BBL)

Bottom friction causes shear in the lower water column
and a log decrease in velocity
Friction is a function of grain size (roughness)

ZO ] Zo - d/30

sediment

U
shear stress ¢ = p, (dU/dz)

I.e. the velocity gradient scaled by dynamic
Viscosity

units of M L1 T2

It is thus force per unit area as follows:

F=p Cp Area U?

where p is density, Cp is drag coefficient, Ais
area, U Is velocity

FIA= t = pCp U2

Define friction velocity U = (t /p)¥2

U~ = Cp U?



The "Law of the wall’

Velocity gradient as a function of roughness

U, = U./x [In (z/z,)]
where x 1svon Karman’s constant

In (z/z,)

<—— slope = Uk




solute exchange

particulate deposition and resuspension
renewal of food for benthos

suspension feeding rates

larval dispersal and settling

and interacts with bioturbation

An example with oxygen profiles and flow
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Fig. 3. Oxygen microprofiles at low and high flow velocities. A. Over a Beggiatoa mat lying on 1op of an
organic-rich sediment. B. Over a decomposing fragment of Fucus serratus coated by bacteria.
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Fig. 2. Time series of (A) fluctuating Oy concentration (thin
Iine) and (B) associated vertical velocity (thin line). Positive
velocity values indicate flow up and awayv from sediment
surface, Data were measured 15 cm above a sediment surface
at a frequency of 25 Hz, Mean values for ime series are also
shown (horizontal lines), as are the smeothed O concentra-
ticn and the smoothed vertical velocity (thick hines) (Aarhus
Eay, Denmark)

Berg et al. 2003. MEPS 261: 75-83



