Rapid increase of observed DIC and pCO₂ in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes

Nicola M. Clargo, Lesley A. Salt, Helmuth Thomas, Hein J.W. de Baar

A R T I C L E I N F O
Article history:
Received 30 January 2015
Received in revised form 25 August 2015
Accepted 27 August 2015
Available online 4 September 2015

Keywords:
Carbon dioxide (CO₂)
Dissolved Inorganic Carbon
Air-sea CO₂ exchange
North Sea
Mechanisms of Ocean Acidification

A B S T R A C T
The CO₂ system in the North Sea over the 2001-2011 decade was investigated using four comprehensive basin-wide datasets covering the late summer periods of 2001, 2005, 2008 and 2011. We find that rises in surface water DIC and pCO₂ exceeded concurrent rises in atmospheric pCO₂, which we attribute primarily to biological activity in late summer. After accounting for this biological signal, the observed ocean acidification occurs at a rate that is consistent with concurrent atmospheric and open ocean CO₂ increases over the 2001-2011 decade. Nevertheless, we do find a consistent reduction in CO₂ undersaturation in the NNS and an increase in CO₂ supersaturation in the SNS. We propose that the synergistic effects of increasing atmospheric pCO₂ and subsequent decrease in seawater buffering capacity, together with rising sea surface temperatures in the future oceans, may reduce the strength of the North Sea as a CO₂ sink. Such a reduction would diminish the efficiency of this region as a continental shelf pump with respect to uptake of CO₂ by the sea. Ultimately this would constitute a positive feedback mechanism, i.e. enhancing the airborne fraction of anthropogenic CO₂ and thus the net rate of increase of atmospheric pCO₂ and subsequent global climate change.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The increase of atmospheric concentrations (partial pressures) of carbon dioxide (CO₂) as a result of anthropogenic activity is a well-documented phenomenon that not only affects global climate via the process known as “global warming”, but also has implications for the chemistry of the global oceans. An estimated 29 % (170 ± 20 GtC) of the total anthropogenic emissions of CO₂ released to the atmosphere from 1750 – 2013 has been absorbed by the oceans, thus constituting a significant CO₂ sink (Le Quéré et al., 2014). Absorption of CO₂ across the air-sea interface is thermodynamically driven by the difference in partial pressure between seawater (pCO₂sw) and the overlying air: ΔpCO₂ = pCO₂sw - pCO₂atm. In the absence of other processes, increasing pCO₂sw will drive a concurrent increase in pCO₂atm. The rise in atmospheric pCO₂ is currently occurring at a rate of 2.1 μatm yr⁻¹ (http://co2now.org/). However, pCO₂sw and therefore ΔpCO₂ is regulated by additional physical processes in the ocean, such as variations in sea surface temperature (SST), the upwelling of CO₂-enriched deep water, and by biologically induced variations in the concentrations of dissolved inorganic carbon (DIC) and total alkalinity (A(T)) (Takahashi et al., 2002). Throughout the euphotic zone, the opposing processes of primary production and remineralisation cause the uptake and release of DIC, respectively. Furthermore, calcification by marine organisms is another process influencing both DIC and A(T), although in a 1:2 ratio, as the production of CaCO₃ removes two moles of A(T) and one mole of DIC for each mole of CaCO₃ produced.

Shelf seas have been shown to have greater seasonal ΔpCO₂ amplitudes than oceanic areas at the same latitude (Thomas and Schneider, 1999; Thomas et al., 2004). Due to their role as a link between terrestrial and oceanic systems, these regions are highly dynamic environments, subject to large variations in hydrographic properties such as temperature and salinity, as well as large inputs of organic matter and inorganic nutrients from terrestrial sources. As a result, shelf seas are highly productive, accounting for an estimated 10-30% of the primary productivity of the global oceans, whilst only covering 7% of their surface area, and therefore they play an important role in the global carbon cycle (Gattuso et al., 1998). However they also show great heterogeneity (Chen and Borges, 2009).

Furthermore, some shelf seas have been identified as ‘continental shelf pumps’ with respect to carbon (Tsunogai et al., 1999), as has been shown for the North Sea (Thomas et al., 2004). Situated on the Northwestern European shelf, the North Sea can be divided into two biogeochemically-distinct regions: the Northern North Sea (NNS) and...
Southern North Sea (SNS) (Fig. 1) that are largely determined by the bathymetric divide of the 50 m depth contour. In the deeper waters of the NNS (~150 m on the shelf and ~700 m in the Norwegian Trench), seasonal stratification sets up a summertime boundary between the upper mixed layer and the water below the seasonal pycnocline. This causes the establishment of an autotrophic system in the surface waters, whereby primary production reduces ambient DIC concentrations. Upon settling of biogenic debris, its remineralisation in subsurface waters then yields release of metabolic DIC into these subsurface waters (Thomas et al., 2004; Wakelin et al., 2012). Stratification prevents this DIC from being mixed back into the surface layer, with two principle effects. Firstly the DIC removed from surface waters is replenished by $pCO_{2,atm}$ to counteract the undersaturation. This summertime drawdown in the NNS of atmospheric CO2 constitutes approximately 2.4 - 3.8 mmol C m$^{-2}$ d$^{-1}$ (Bozec et al., 2005). Secondly, due to water mass circulation, the vast majority of the remineralised DIC within the subsurface waters is transported out into intermediate waters of the North Atlantic (Wakelin et al., 2012), without further contact with the atmosphere. This is a result of the dominant anti-clockwise circulation of the North Sea and a regional subsurface water residence time of the order of one year or less (Lenhart et al., 1995). It is this net transport of carbon from the atmosphere via surface coastal waters into deep oceanic waters that is termed the “continental shelf pump”.

In contrast, the SNS is a shallow region where strong tidal mixing results in the absence of stratification and therefore a one-compartment water column. As a result, the processes of primary production and remineralisation are not spatially separated and the system is predominantly heterotrophic in the summer, whereby the remineralised carbon is released back into the single-layer water column. The subsequent reduction in the difference in partial pressure between the surface water and the overlying atmosphere leads to a smaller air/sea exchange (flux) of CO2. In addition to the release of remineralised carbon, higher SST in the SNS, in comparison to the NNS, leads to the supersaturation of CO2 in SNS waters, with subsequent outgassing of CO2 to the overlying atmosphere. Thus this region acts as a summertime source of CO2, with an estimated summertime efflux of 0.8 - 1.7 mmol m$^{-2}$ d$^{-1}$ from the sea to the atmosphere (Bozec et al., 2005).

The summertime dichotomy of pCO_2 in the surface waters of the NNS and SNS has been well documented (Thomas et al., 2004; Bozec et al., 2005; Prowe et al., 2009; Omar et al., 2010; Salt et al., 2013). Biological activity acts as the dominant driver of summertime pCO_2 fluxes in the NNS (Thomas et al., 2005a; Prowe et al., 2009), however, in the SNS there is some dispute as to whether temperature (Prowe et al., 2009, Kühn et al., 2010) or biological activity (Schiettecatte et al., 2007) is the dominant driver. Nevertheless, during the late summer period, the North Sea basin as a whole has been shown to constitute a weak sink of CO2, with an estimated uptake of 1.5 to 2.2 mmol C m$^{-2}$ d$^{-1}$ (Bozec et al., 2005).

The continued flux of CO2 from the atmosphere into the ocean causes an increase in bicarbonate ions (HCO3$^-$), a decrease in carbonate...
ions (CO$_2^-$) and an increase in hydrogen ions (H$^+$). These changes lead to a decrease in pH that is commonly termed “ocean acidification” in the literature, which is projected to continue as atmospheric pCO$_2$ continues to rise, with potentially deleterious effects at the individual, species, and ecosystem level (Doney et al., 2009). However, due to a paucity of long-term observational data in coastal regions, it has often been difficult to distinguish between considerable natural variability and long-term trends attributable to rising atmospheric CO$_2$, and therefore the development of reliable models for coastal seas is particularly important. Wakelin et al. (2012) found the Northeast Atlantic, including the European Shelf, to be a net sink for CO$_2$ in a simulation from 1989 – 2004, with biological activity acting as a stronger driver of air-sea CO$_2$ flux than temperature. Lorkowski et al. (2012) simulated changes in the North Sea CO$_2$ system from 1970 – 2006 and suggest that the principle drivers for variations in air-sea CO$_2$ flux are temperature, net ecosystem production and pH.

Furthermore, with continued invasion of atmospheric CO$_2$ into the oceans, the buffering capacity of surface waters is decreasing, whereby as the surface ocean absorbs more CO$_2$, its capacity for further uptake of CO$_2$ is reduced. This is indeed thought to be occurring in the North Sea, as shown by observational studies (Thomas et al., 2007) and as predicted by model simulations for this region (Lorkowski et al., 2012), who found that an increase in temperature combined with a decrease in pH led to a 30 % decrease in the CO$_2$ uptake capacity of the North Sea over the period of their simulation.

With the increasing availability of carbon system datasets spanning longer time periods, it is becoming possible to elucidate anthropogenically-induced trends based upon observational data, and to validate model predictions. A recent review of a suite of time-series studies covering 15-30 years of the carbon system in surface waters in various locations around the globe reporting acidification at rates that were concurrent with atmospheric CO$_2$ increases (Bates et al., 2014). However, several studies have indicated that certain shelf seas may be experiencing changes that are occurring faster than those that would be expected due to rising atmospheric pCO$_2$ (Thomas et al., 2007, Wootton et al., 2008). In order to determine whether or not this is the case for the North Sea, we present new data from a cruise in the late summer of 2011, and in combination with previous observational datasets, investigate here the carbon system of the North Sea over the 2001-2011 decade.

2. Materials and methods

2.1. Dataset

Four late summer cruises were undertaken aboard RV Pelagia on: 18/08 – 13/09/2001; 17/08 – 05/09/2005; 21/08 – 07/09/2008 and 01-25/09/2011. A 1° by 1° grid of approximately 90 stations was occupied during each cruise and sampled via a Conductivity Temperature Depth (CTD) system. This yielded the standard suite of oceanographic data, comprising temperature, salinity (derived from conductivity), Depth (CTD) system. This yielded the standard suite of oceanographic

2.1.1. Measured parameters

2.1.1.1. DIC and A$_T$. Discrete water samples were collected at each station over the total depth range and analysed for dissolved inorganic carbon (DIC$_{obs}$) and alkalinity (A$_T$). All collection and analysis techniques were carried out as described in Dickson et al. (2007). Water samples were collected using borosilicate glass bottles and stored in the dark before being measured within 12 hours. Measurements were conducted through the use of VINDTA 3C’s (Versatile Instrument for the Determination of Titration Alkalinity, Marianda, Kiel), which are capable of simultaneously analysing samples for DIC and A$_T$ via coulometric and potentiometric titrations, respectively.

Quality control and calibration were achieved by the use of Certified Reference Material (CRM) from Prof. Andrew Dickson at Scripps Institute of Oceanography, San Diego, California. As we assume that our measurements of CRMs are 100% accurate, we can only calculate precision for DIC$_{obs}$ and A$_T$ data. We quote precision as the standard deviation of replicate samples, which for the 2011 data was ± 1 μmol kg$^{-1}$ for A$_T$, based on 161 replicates, and ± 2 μmol kg$^{-1}$ for DIC$_{obs}$, based on 156 replicates. In comparison, for the 2001 and 2005 cruises, precision was calculated at ± 2-3 μmol kg$^{-1}$ for A$_T$, and ± 1.5 μmol kg$^{-1}$ for DIC$_{obs}$ (Thomas et al., 2007). For 2008, precision was given as ± 1.6 μmol kg$^{-1}$ for A$_T$ and ± 2.1 μmol kg$^{-1}$ for DIC$_{obs}$.

The 2011 cruise DIC$_{obs}$ and A$_T$ data have also been investigated by Burt et al. (2015).

2.1.1.2. Oxygen. Discrete oxygen samples were measured in duplicate following the Winkler titration method (Winkler, 1888). These were then collated with the CTD, nutrient and carbon data. Based upon replicate samples, precision of these data was calculated as ± 0.5 O$_2$ μmol l$^{-1}$.

2.1.1.3. Ancillary Parameters. The CTD system was mounted on a standard rosette frame, comprised of 24 x 25 l Ocean Test Equipment niskin bottles. The accuracy of each of the instruments on the CTD package is quoted by the manufacturer (Sea-Bird Electronics) as the following: conductivity to ± 0.003 S/m, temperature to ± 0.001 °C and pressure to ± 0.015% of full scale (http://www.seabird.com/sbe911plus-ctd, 2015). Salinity is derived from conductivity, and has been shown to be accurate to ± 0.0033 PSU (LeMenn, 2011).

Discrete samples were also collected for the determination of inorganic nutrients and were measured simultaneously using a QuAAtro Continuous Flow Analyser, with channels measuring silicate (Si(OH)$_4$), phosphate (PO$_4$), nitrite (NO$_2$), a combination (NOx) of nitrate (NO$_3$) and nitrite (NO$_2$), and ammonium (NH$_4^+$). Measurements were calibrated using low nutrient seawater (LNSW) at a salinity range similar to that found in the North Sea. Accuracy cannot be stated for these data but the analysis group performs well in global inter-comparison studies. Precision was calculated using the standard deviation of duplicate samples between runs and is quoted as the following: ± 0.058 μmol l$^{-1}$ Si for Si(OH)$_4$; ± 0.014 μmol l$^{-1}$ PO$_4$; ± 0.017 μmol l$^{-1}$ N for NO$_3$; ± 0.087 μmol l$^{-1}$ N for NOx and ± 0.057 μmol l$^{-1}$ N for NH$_4^+$ (NOX, S.Osebaar, pers.comm).

2.2. Calculations

2.2.1. Data manipulation

Data collected during each of the cruises were consolidated and matched by location, to within 0.2° latitude, 0.2° longitude and 20 % of the depth. To ensure comparability only A$_T$ or DIC$_{obs}$ data available from the same station and depth for all four years were collated. This resulted in 81 comparable stations. These data were then gridded to a 0.5° resolution in order to prevent bias due to sampling density. Finally, due to differences in the number of data points between parameters, to ensure a fair comparison only gridded data that occurred at the same point in all four years were used for the analysis of each parameter.

For the purposes of this paper, the Northern North Sea and Southern North Sea shall be defined as ~ 56°N and ~ 56°N, respectively (Fig. 1), and henceforth be referred to as the NNS and SNS. This latitude has been selected as it represents the approximate position of the 50 m depth contour, which has been used previously to distinguish between the two regions (Salt et al., 2013, Queste et al., 2013). The surface refers to the upper 10 m of the water column.
2.2.2. Resolving the carbon system using CO2SYS

We used DICobs and A7 to calculate a suite of other carbon system parameters using the MATLAB version of CO2SYS (Lewis and Wallace, 1998, van Heuven et al., 2011). Additional input parameters were: temperature, salinity, pressure, Si(OH)4, and PO4, with the specified carbonic acid dissociation constants, K1 and K2, of Mehrbach et al. (1973) refitted by Dickson and Millero (1987). Calculated parameters include: partial pressure of CO2 (pCO2), pH, Revelle factor, HCO3, CO32-, ΩCalcite and ΩAragonite.

Calculation error (CE) was calculated through the use of CO2SYS. The precision of the DICobs and A7 measurements were applied to the dataset for each cruise, thereby establishing an upper and lower limit of Measurement Error (ME), yielding DICmax, DICmin, ATmax and ATmin. These were then used as input parameters for CO2SYS, in conjunction with the associated hydrographic and nutrient data, which have estimated errors that are smaller than those estimated for DICobs and A7, and are thus accounted for here. The following combinations were run through CO2SYS: DICmax with A7min and DICmin with A7max to obtain a set of carbonate parameters with the largest error margin possible. The minimum value for each parameter was then subtracted from the maximum value, and the CE (or mean difference) was divided by two to give an error margin on both sides of the calculated value.

2.2.3. Calculation of abiotic DIC (aDIC)

Abiotic DIC (aDIC) was calculated in order to remove the effects of primary productivity and respiration on DICobs, thereby removing the effects of differences in these biological processes between years. Firstly, Apparent Oxygen Utilisation (AOU) was calculated (Eq. (1)). This term describes the biological activity experienced by a parcel of water since it was last at equilibrium with the O2 concentration of the atmosphere, and was calculated using the equilibrium saturation (as a function of salinity and temperature) of O2 with the atmosphere (O2sat) and the discrete oxygen data (O2meas):

\[
\text{AOU} = [O_2]_{\text{sat}} - [O_2]_{\text{meas}}
\] (1)

This was then used to calculate aDIC, using DICobs, and the application of the factor 0.7 representing the Redfield ratio (Anderson and Sarmiento, 1994), which is comparable with a mean coefficient of 0.8 that we obtained in our calculation of DICbio (see Section 2.2.6):

\[
a\text{DIC} = \text{DIC}_{\text{obs}} - (\text{AOU} \times 0.7)
\] (2)

Here the term (AOU*0.7) represents the portion of DIC gain or loss due to net respiration or net photosynthesis, respectively. The balance of these processes is termed Net Ecosystem Production (NEP): NEP = NPP – HR, where NPP is net primary production and HR is heterotrophic respiration. Thus, positive NEP occurs when NPP > HR; the system is described as being net autotrophic and acts as a sink for atmospheric CO2. Conversely, negative NEP indicates that NPP < HR, therefore the system is net heterotrophic and constitutes a net source of CO2 to the atmosphere.

2.2.4. Calculation of DICbio

An alternative approach to approximate the DIC gain or loss due to biological effects is by the derivation of the term DICbio (Borges, 2011; Burt et al., 2015), which will account for changes due to primary production and respiration, as well as the biological formation of calcium carbonate (CaCO3) and/or its dissolution. Briefly, primary production and its reverse i.e. respiration, affect the DIC, whereas biocalcification/dissolution affects both DIC and A7. We inherently consider any biological impact on A7 via the inclusion of in-situ data in our calculation of DICbio, which was entered as an input parameter into the MATLAB version of CO2SYS, in addition to in-situ temperature, salinity and nutrient data. We then calculated the DIC concentrations that would be observed assuming that the seawater would be at equilibrium with the atmospheric CO2 partial pressure, i.e. pCO2atm = pCO2sw then yields DICatm. The differences between this calculated DICatm and DICobs (DICobs, Eq. (3)) thus indicate the presence and extent of additional biological sources or sinks of DIC in the North Sea, under the assumptions that the surface waters are equilibrated with respect to atmospheric CO2 prior to the onset of biological activity, and that CO2 air-sea exchange is slow or negligible at a shorter time scale. A further underlying assumption is that surface water temperature does not vary, or varies only incrementally at the time scale applicable to DICbio. The relevant integration time scale is sub-seasonal (approximately several weeks). Given the timing of our cruises at the end of the summer period, the temperature had been relatively stable at the summer plateau (see for example Prowe et al., 2009), or had just started to slowly decrease. We argue that the effect of temporal variability in temperature is minor here, and if present, the decrease in temperature would yield an underestimate of the respiratory i.e. positive component of DICbio.

The input pCO2atm used for the calculation was the monthly averaged atmospheric CO2 partial pressure for the time period that corresponded to each cruise, using data collected at the Mace Head Atmospheric Research Station, Ireland (National Oceanographic and Atmospheric Association at their website: ftp://afftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/co2_mhd_surface flask_1_cegg_month.txt). In order to calculate errors for DICatm, we followed the same procedure as detailed in Section 2.2.2, using a combination of atmospheric pCO2 partial pressures from Mace Head, supplied with an estimated measurement error of ±0.09 ppm (Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Ed Dlugokencky pers.comm), and measured A7.

DICbio was then calculated using the following equation:

\[
\text{DICbio} = \text{DIC}_{\text{obs}} - \text{DIC}_{\text{atm}}
\] (3)

This term provides an alternative means of inferring biological activity, via the removal of the impact of hydrographic variability on DICobs.

2.2.5. Comparison of aDIC and DICbio

In order to assess the validity of our calculations outlined in Sections 2.2.4 and 2.2.5, we compare the two biological DIC approximations, DICbio with (DICobs – aDIC) for each location. It should be stated that these two different methods are applicable to different sections of the water column. The underlying assumption in the calculation of DICbio is that equilibrium exists between the water and the atmosphere, and that other processes are not altering DIC, thus this is only applicable to surface waters. In contrast, due to the rapid equilibrium between the surface waters and the overlying atmosphere with respect to oxygen, AOU is not necessarily representative of net biological activity in surface waters, but better reflects biological processes (i.e. respiration) in subsurface water. Furthermore, (DICbio – aDIC) does not account individually for the biological effects of CaCO3 formation and dissolution, whereas these effects are inherent in our calculation of DICbio. We therefore expect that differences between the two methods will be at least partly due to this.

For the un-gridded water column data the mean difference (DICbio – (DICobs – aDIC)) between the two methods is consistently close to 0 (-2.5 to -0.1 μmol kg⁻¹) and shows a normal distribution with standard deviations of: 25 μmol kg⁻¹; 16 μmol kg⁻¹; 16.3 μmol kg⁻¹; and 21.1 μmol kg⁻¹, for 2001, 2005, 2008 and 2011, respectively. For the gridded surface data, the mean and standard deviation of the difference between the two methods was: -10.9 μmol kg⁻¹ and 32.6 μmol kg⁻¹; -2.9 μmol kg⁻¹ and 16.9 μmol kg⁻¹; 0.26 μmol kg⁻¹ and 18.1 μmol kg⁻¹; and -0.4 μmol kg⁻¹ and 21 μmol kg⁻¹ for 2001, 2005, 2008 and 2011, respectively.

We suggest that the standard deviation of the differences between DICbio and (DICobs – aDIC) are less than, or comparable to, the uncertainty given for DICbio in Table 1. Therefore, for the purpose of this study, we consider both methods valid.
2.2.6. Calculation of DICbase

As during this time of year production and remineralisation are consistently ongoing, for this study, direct comparisons of DIC values are problematic. Below the surface layer, the covariance of AOU and DICobs is used to infer a "baseline" DIC, which is the theoretical DIC that the parcel of water would have if no primary production or respiration was taking place. We calculate this for each station by plotting subsurface DICobs against AOU (AOU on x-axis, DICobs on y-axis) for example stations, see Fig. 2), such that remineralisation is indicated by positive AOU, and primary production inferred by negative AOU. The points for each station are regressed using a robust regression, and the point at which this line crosses the y-axis, that is when AOU = 0, is taken as the "baseline" DIC value, hereon throughout referred to as DICbase.

The shallow nature of the SNS and certain hydrographic features in the NNS (such as the Norwegian Trench) caused significantly greater residuals in the model, for affected stations. For this reason, we selected stations with residuals < 10, which accounted for about 78 ± 1% of stations for all four years. The mean slope yielded using every regression for our selected stations is 0.8, which is close to the factor of 0.7 used to calculate aDIC (see Eq. (2)). We then gridded these data across the North Sea basin, as described in Section 2.2.1, and finally calculated mean values for the NNS and SNS. In order to estimate errors for DICbase.

![Fig. 2. DICbase plots for a) NNS station (59° N, 2.5° E) and b) SNS station (53.8° N, 4° E). Lines represent the robust fit of the data and symbols represent the data points. Please note, these stations are used as examples of the method of calculation and do not represent mean values for DICbase in each region.](image-url)
we quote the average one standard deviation of the residuals of each fit for each year, which result in error estimates of \(\pm 4 \mu \text{mol kg}^{-1} \pm 3.1 \mu \text{mol kg}^{-1} \pm 2.8 \mu \text{mol kg}^{-1} \) and \(\pm 3 \mu \text{mol kg}^{-1} \) for 2001, 2005, 2008 and 2011, respectively.

2.2.7. Temperature-normalised pCO₂

To remove the effect of differences in sea surface temperature between cruises, \(pCO_2 \) data were normalised to a temperature of 16 °C \((n_pCO_2) \). The temperature correction follows the equation of Takahashi et al. (2002):

\[
npCO_2 = pCO_2 \times \exp(0.0423 \times (16 - \text{observed temperature}))
\]

(4)

2.2.8. \(pCO_2 \) fluxes

We calculated the air-sea \(CO_2 \) flux, henceforth to be referred to as average \(CO_2 \) flux, following the method outlined in Takahashi et al. (2002), using:

\[
F = k \times \alpha \times (\Delta pCO_2)
\]

(5)

where \(k \) is the \(CO_2 \) gas transfer velocity, \(\alpha \) is the solubility of \(CO_2 \) in seawater and \(\Delta pCO_2 \) is the difference in \(pCO_2 \) between the surface ocean and atmosphere. To calculate \(k \) we used the gas transfer velocity of Nightingale et al. (2000), which actually was established in the North Sea, and average monthly wind speed data corrected to 10 m height, obtained from the NCEP/NCAR re-analysis project (Kalnay et al., 1996), and provided by the NOAA-ESRL Physical Sciences Division (Boulder, CO, USA, from their Web site at http://www.esrl.noaa.gov/psd/). We chose to use monthly averaged wind speed data, as opposed to data of a higher frequency, to reduce the influence of high wind events on our flux calculations, and therefore to better ensure that they represent conditions typical to the late summer season. Also, if we compare wind speeds of a higher resolution, our fluxes at different locations may be affected by different wind speeds, and the time period of one month corresponds to our observational window.

In contrast to previous investigations of \(pCO_2 \) in the North Sea, and for reasons of clarity and coherence, we here use the \(pCO_2 \) values that have been computed using DICobs and \(AT \), thus using a comparable method to our calculation of DICbas (Eq. (3)). While this might imply a computational uncertainty, the main purpose of the present study is to deepen our mechanistic understanding rather than to provide a highly resolved \(CO_2 \) air-sea flux budget. These data have a calculation error of \(\pm 13 \mu \text{mol kg}^{-1} \), which was used to calculate maximum and minimum \(pCO_2 \) fluxes, the difference between which is represented by our error estimate.

We calculated the average \(CO_2 \) flux for the entire North Sea basin, and separately for the NNS and SNS, to elucidate trends over the 2001-2011 decade and to determine whether or not each region acted as a summertime source or sink of \(CO_2 \) for the atmosphere. To enable a comparison of the effects of temperature, biological activity and wind speed on the average \(CO_2 \) for the 2001-2011 decade and to determine whether or not each region acted separately for the NNS and SNS, to elucidate trends over the 2001-2011 decade and to determine whether or not each region acted as a summertime source or sink of CO\(_2\) for the atmosphere. To enable a comparison of the effects of temperature, biological activity and wind speed on the average CO\(_2\) flux, we here assume that only physical processes are left; namely advection and air-sea flux. Previous studies have divided the North Sea into 15 boxes and have shown that the residence time of these is of the order of one month (ICES, 1983). Given that our cruises were completed within less than this time period, we assume that advection is negligible. Therefore the only process remaining is air-sea flux.

This method assumes superposition and linearity, as described in Pätzsch and Lorkowski (2013), whereby we assume that we incorporate all processes affecting \(pCO_2 \). We account for changes to \(CO_2 \) solubility via the inclusion of in-situ temperature and salinity data as input parameters for CO2SYS. Similarly, we account for changes in \(AT \) by including our in-situ \(AT \) data. We therefore assume that only physical processes are left; namely advection and air-sea flux. Previous studies have divided the North Sea into 15 boxes and have shown that the residence time of these is of the order of one month (ICES, 1983). Given that our cruises were completed within less than this time period, we assume that advection is negligible. Therefore the only process remaining is air-sea flux.

3. Results

3.1. Observations

The basin-wide average gridded surface data of the principal hydrographic and carbonate parameters are summarised in Table 1, with averages also given for the SNS and NNS. Mean basin-wide surface temperatures were highest in the summers of 2001 (15.7 °C) and 2008 (15.84 °C) with the coldest being 2011 (14.24 °C), thus showing a total variation of 1.6 °C between years. The observed fall in temperature in 2011 was primarily driven by much colder surface temperatures in the NNS (13.3 °C), which were more than 2 °C colder than the SNS (15.46 °C). The disparity in temperature between the two regions can be observed throughout the 2001-2011 decade, with consistently warmer surface temperatures detected in the SNS, however, the gradient between the SNS and NNS varies between years. The distribution of salinity (not shown), on the other hand, is relatively uniform across the central North Sea basin, with the exception of lower salinities observed in regions that are in close proximity to fluvial influences and the Baltic outflow. The total range of mean salinity between years was 0.39 in the NNS, and 0.38 in the SNS, although no trends are evident within either of the two regions.

The basin-wide surface DICobs data for each of the four summer cruises are shown in Fig. 3. In 2001 and 2008, and to a lesser extent in 2005, a distinct boundary between the NNS and SNS that roughly correlates with the 50 m depth contour is evident. In comparison to the SNS, DICobs in the NNS is lower, with mean concentrations of 2009, 2044, 2039, and 2061 μmol kg⁻¹ in 2001, 2005, 2008 and 2011, respectively. The regional minima are consistently found in the Skagerrak and close to the Norwegian coastline for all years, with a minimum observed in 2001 (1927 μmol kg⁻¹) and a maximum in 2011 (1974 μmol kg⁻¹). Particularly high concentrations (~2130 μmol kg⁻¹) are evident close to the Dutch, German and Danish coastlines, and are the result of fluxes of biological DIC out of the bordering Wadden Sea (Schwichtenberg, 2013, Burt et al., 2015), out of shallow sediments, and to a lesser extent, due to high concentrations within fluvial sources, given the location of the Elbe, Rhine and Scheldt estuaries in this region. These sources contribute to the higher DICobs values in the SNS for all four years; where mean concentrations were 2063, 2074, 2077 and 2091 μmol kg⁻¹ in 2001, 2005, 2008 and 2011, respectively. As such, there is a minimum difference of 30 μmol kg⁻¹ (max difference of 54 μmol kg⁻¹) between the SNS and NNS for all years, showing a significant DICobs gradient across the surface waters of the North Sea.
In the summers of 2005 and 2011, the boundary between the two regions is less apparent, with a difference in DIC_{obs} of 30 μmol kg^{-1} between the NNS and SNS found in both years. The lower north-south gradient is driven principally by higher DIC_{obs} values in the NNS, rather than by lower DIC values in the SNS. Minimum DIC_{obs} concentrations within the Baltic outflow are also not as extreme during 2005 and 2011: 1955 μmol kg^{-1} in 2005 and 1974 μmol kg^{-1} in 2011. Low concentrations of DIC_{obs} are evident along the Danish and German coastlines in the summer of 2005, which may be attributable to an increase in the southerly extent of the Baltic influence, or to high levels of primary production, as indicated by low DIC_{bio} (Fig. 4). Despite these regional changes, throughout the 2001-2011 decade mean basin-wide surface DIC_{obs} increased in both regions of the North Sea; by 52 μmol kg^{-1} in the NNS and by 28 μmol kg^{-1} in the SNS (Table 1). These increases led to a basin-wide DIC_{obs} increase of 41 μmol kg^{-1} in surface waters from 2001 to 2011.

In contrast to these variations in DIC_{obs}, variations in mean surface A_{T} (Table 1) over the 2001-2011 decade were small, with a range of only 8 μmol kg^{-1} in the NNS and 4 μmol kg^{-1} in the SNS. The A_{T} distribution (not shown here, see e.g. Burt et al., 2015) also remains stable between years,
and as with the similarly constant salinity, no temporal trend appears discernable. As a result of this stability, the calculated variations in pCO₂ are predominantly DIC-driven, with the additional impact of changes to hydrographic properties.

Mean surface water calculated pCO₂ increased substantially in both regions of the North Sea from 2001 to 2011: by 75 μatm in the NNS and 37 μatm in the SNS. These increases are appreciably larger than the observed increase of 21.48 μmol kg⁻¹ in atmospheric pCO₂ over the same time period. The imbalance in increases between the atmospheric and surface layer pCO₂ is indicative of the presence of processes other than those with a purely thermodynamic impact, driving the CO₂ system in seawater. Here we will focus our investigation on the drivers of the increasing DICobs and thus pCO₂, in the North Sea over the 2001-2011 decade.

3.2. DIC vs. salinity

A mixing analysis indicates the presence of three water masses that constitute the North Sea (Fig. 4). These are the North Atlantic, Southern Bight, and Skagerrak, and the mixture of all three is known as Central North Sea water (Kempe and Pegler, 1991; Bozec et al., 2005). The Central North Sea water has a relatively high salinity (~34) as a result of the dominant influence of the North Atlantic water mass. In contrast, due to high fluvial input, the Southern Bight region has a characteristic lower salinity (32-34) but higher DIC concentrations (2100 - 2150 μmol kg⁻¹) and the Skagerrak region also has a low salinity due to the Baltic inflow, but markedly lower DIC concentrations (~1975 μmol kg⁻¹).

The aforementioned increase of DICobs in surface waters over the decade is also evident in Fig. 4, particularly within the Central North Sea water mass. Robust regression fits are applied to the Southern Bight – Central North Sea mixing line (data points chosen by salinity values and location) and the Skagerrak – Central North Sea mixing line, with considerable variability in the Southern Bight. Using the calculated regression fits for each year (shown in Fig. 4) for the Skagerrak - Central North Sea, we are able to determine a theoretical DIC at a salinity of 35, typical of the Central North Sea Water: 2034 μmol kg⁻¹ for 2001; 2075 μmol kg⁻¹ for 2005; 2066 μmol kg⁻¹ for 2008 and 2094 μmol kg⁻¹ for 2011. The theoretical DIC within this water mass increased steadily between 2001 and 2011, with the exception of a small decrease from 2005 to 2008, and therefore compares well with mean DICobs, as previously noted in the NNS (Table 1).

3.3. DICbio

3.3.1. Basin-wide DICbio distribution

Basin-wide surface plots of DICbio (see calculations Section 2.2.4) are shown in Fig. 5. In 2001, a clear division between the two biogeochemically distinct regions is immediately apparent, with net autotrophy indicated by negative DICbio values and hence biological uptake of DIC in the NNS, accounting for a mean of -51 μmol kg⁻¹ of DIC. Positive DICbio (mean value of the four years = +8 μmol kg⁻¹) in the SNS indicates net heterotrophy in this region (see Burt et al., 2015 for details), leading to the production of excess DIC to that which would be present purely due to air-sea exchange of CO₂. DICbio is highly variable in the SNS, with a reduction from 7 μmol kg⁻¹ to 1 μmol kg⁻¹ between 2001 and 2005, and subsequent increases to 9 μmol kg⁻¹ in 2008 and 14 μmol kg⁻¹ in 2011. In contrast, over the decade, DICbio steadily becomes less negative in the NNS from a minimum of -51 μmol kg⁻¹ in 2001 to -14 μmol kg⁻¹ in 2011, representing a reduction in ongoing NEP at the time of sampling, although it should be noted that this may be the result of bias due to seasonal variability and changes in our observation window due to cruise timings.

The maximum values of DICbio are found along the coastlines of the UK and continental Europe, particularly in 2001 (47 μmol kg⁻¹ off the coast of East Anglia) and in 2011 (55 μmol kg⁻¹ at a station located off the German coast and in relatively close proximity to the Elbe outflow, see also Burt et al., 2015). The most negative values of -135 μmol kg⁻¹ evident along the Scottish Coast and -115 μmol kg⁻¹ on the Shetland Shelf in 2001 correspond with the particularly low mean surface DICobs concentrations shown in Fig. 3. Particularly high oxygen concentrations (355 μmol l⁻¹) were also observed at the same location close to the Scottish Coast, providing further evidence to support primary productivity as the cause of low DICobs concentrations.

3.4. Station Profiles

To further examine the effect of biological activity on DICobs in the two contrasting regions of the North Sea, we investigated the full water column at two selected stations: at 59°N, 2.5°E and at 53.8°N, 4°E (Fig. 1), representative of the NNS and SNS, respectively.

In the NNS, the vertical profiles (Fig. 6(a)) for all years clearly show the presence of stratification, with surface depletion of DICobs. The accompanying profile of AOU (Fig. 6(b)) indicates that in the surface layer the decrease in DICobs is due to primary productivity (indicated by negative AOU values), and sub-surface remineralisation of sinking organic matter below the mixed layer leads to much higher DICobs concentrations at depth. These profiles are also in agreement with the mean data for this region (Table 1), with DICobs at a minimum in 2001, with similar profiles apparent in 2005 and 2008, and with maximum DICobs throughout the water column in 2011.

With the exception of 2005, where stratification is evident, the AOU and DICobs vertical profiles in the SNS (Fig. 6(c)) are rather uniform with depth. Mixing of the relatively shallow water column in this region prevented stratification in 2001, 2008 and 2011, and therefore no physical boundary existed between the opposing processes of primary production and respiration. Contrary to the NNS, the range of values over the water column is much smaller, with the highest DICobs observed at depth in the summer of 2005. These profiles are in agreement with the regional average mean surface DICobs (Table 1), with minimum and maximum surface values observed in 2001 and 2011, respectively, and a higher DICobs in 2005 than observed in 2008.

It should be noted that AOU is not an appropriate measure of biological activity at the very surface (see Section 2.2.3), as by definition it is a measure of the change in the oxygen content of a water parcel since it was last at equilibrium with the atmosphere. Despite the fact that air-
The sea gas exchange of O₂ occurs very rapidly, the AOU profiles in Fig. 6 clearly indicate primary productivity above the mixed layer (i.e. negative values of AOU). Remineralisation is observed below it in the subsurface layers (i.e. positive AOU values), for all years at the NNS station, and for 2005 at the SNS station. Furthermore, the AOU profiles in the NNS show an apparent increase throughout the decade, which may be indicative of a reduction in primary productivity. This is also indicated by the aforementioned less negative values in mean surface DICbio (Table 1 and Fig. 5) and AOU in this region (Table 1). Further effects yielding these observations may be the effects of interannual variability combined with changes in the timing of our observations. In order to assess whether this trend is reflected in sub-surface waters, we integrated the AOU beneath the mixed layer depth in the NNS station, and by averaging over the applicable water depth, we calculate a deep station specific AOU of 40, 39, 42 and 60 mmol m⁻³ for 2001, 2005, 2008 and 2011, respectively.

At the SNS station, primary production was the dominant process throughout the water column for all years, with the exception of 2005, where AOU values below a depth of 20 m indicate that respiration prevailed.
3.5. DICbase

Following the observed relationship between DICobs and AOU in both the SNS and NNS, we further used this relationship to estimate a background DIC value, or DICbase, present in the North Sea (see methods Section 2.2.6). The results show that DICbase was relatively stable in the SNS, with values of 2084 ± 4 μmol kg⁻¹, 2089 ± 3.1 μmol kg⁻¹, 2091 ± 2.8 μmol kg⁻¹ and 2093 ± 3 μmol kg⁻¹ for 2001, 2005, 2008 and 2011, respectively. There is somewhat greater variation in the NNS, with values of 2095 ± 4 μmol kg⁻¹, 2105 ± 3.1 μmol kg⁻¹, 2103 ± 2.8 μmol kg⁻¹ and 2083 ± 3 μmol kg⁻¹, respectively. The relationship between AOU/DICobs shows significant positive correlations in the SNS, whereas the inverse relationship is apparent in the NNS, again showing the contrast in ongoing processes.

3.6. pCO2

In 2001, mean surface pCO₂ and ΔpCO₂ (pCO₂sw – pCO₂atm) in the NNS were 281 μatm and -81 μatm, respectively (Table 1, Fig. 7). From 2001 to 2011, mean surface pCO₂ increased by 75 μatm and although this region acted as a sink for all four years (negative ΔpCO₂), ΔpCO₂ increased by 53.2 μatm to -27.5 μatm in 2011, indicating a reduction in CO₂ sink capacity. Conversely, the SNS acted as a consistent summer-time source of CO₂ during the 2001-2011 decade (Table 1). With the exception of a marginal decrease of 2 μatm in pCO₂ between 2001 and 2005, the SNS was analogous to the NNS in that the mean pCO₂ and ΔpCO₂ increased throughout the decade, by 37 μatm and 15.7 μatm, respectively. The apparent increase in ΔpCO₂ indicates an enhancement of this region as a source of CO₂.

Normalising these data to a temperature of 16 °C (see methods Section 2.2.7) amplifies the pCO₂ and ΔpCO₂ trends in both regions. In the NNS, surface npCO₂ increased by 107 μatm over the decade. Despite an interim decrease between the years of 2005 (mean ΔnpCO₂ = -17.5 μatm) and 2008 (mean ΔnpCO₂ = -27.5 μatm), we find an increase in ΔnpCO₂ from -71.7 μatm in 2001 to +13.4 μatm in 2011, indicating that if the SST had been 16 °C, the NNS would have switched from CO₂ sink (undersaturation) to source (supersaturation). In the SNS, we find an increase of +58 μatm in npCO₂ and of 36.9 μatm in ΔnpCO₂ from 2001-2011, with both increasing steadily between years (Table 1).

Given that ΔpCO₂ drives the air-sea CO₂ flux, it is not surprising that a comparison of the average CO₂ flux (see calculations Section 2.2.8) indicates that the NNS acted as a sink for pCO₂ and the SNS as a source (Fig. 8). From 2001-2008, the NNS average CO₂ flux exceeded that of the SNS, such that the entire North Sea acted as a weak sink for CO₂, as previously described in the literature (Bozec et al., 2005). However, in 2011, the comparatively large average CO₂ flux in the SNS of 2.23 mmol m⁻² d⁻¹ exceeded that of the NNS (-1.87 mmol m⁻² d⁻¹) in magnitude, resulting in net positive flux, and a resultant switch to the North Sea basin acting as a source of pCO₂ to the atmosphere (Fig. 8(a)).

Due to the method used to determine biological flux (see Section 2.2.8, method (iii)) we can directly compare it to our estimated average CO₂ flux (Fig. 8(a), (b)). We find that in the NNS, biological activity constituted a significant proportion of the average CO₂ flux: 29 % in 2001; 42 % in 2005; 40 % in 2008; and 19 % in 2011. All aforementioned fluxes were indicative of primary production, enabling a distinction of the net effect of biology. However, in the SNS, whilst the biological flux is also indicative of primary production, the average CO₂ flux is positive (CO₂ source), therefore other processes counteract the biological effect in this region. For comparison the biological...
flux and average CO₂ flux calculated for each year were: 0.37 and -0.37 mmol m⁻² d⁻¹ for 2001; 0.74 and -0.19 mmol m⁻² d⁻¹ for 2005, 0.35 and -0.56 mmol m⁻² d⁻¹ for 2008 and 0.41; and -2.23 mmol m⁻² d⁻¹ for 2011.

By plotting the anomalies of the calculated total CO₂ flux it is apparent that from 2001-2008, temperature had a positive effect (greater outgassing) on flux direction, in both the NNS and SNS. However, in 2011, the temperature-normalised flux anomaly had a comparatively large negative value, indicative of enhanced uptake of CO₂, within both regions of the North Sea. Whilst the wind-averaged flux anomaly was variable in the SNS, a clear decreasing trend over the 2001-2011 decade is evident throughout the basin (Fig. 8(b)) and in the NNS (Fig. 8(c)).

4. Discussion

4.1. DIC

Over the 2001-2011 decade we observe a substantial increase in surface DICobs in both regions of the North Sea, which leads us to investigate the cause, and more specifically if it is the result of a long-term trend due to anthropogenic CO₂ emissions, or merely the expression of natural variability. Of the factors influencing DIC in the North Sea we further consider biological activity, i.e. photosynthesis and remineralisation, and CO₂ gas exchange across the air-sea interface. Given that fluvial input constitutes 0.7 % of the carbon budget of the North Sea basin (Thomas et al., 2005b), we will assume that the variability of the fluvial effects on DICobs over the 2001-2011 decade is negligible for the purpose of this study. We also assume that lateral advection of water from the North Atlantic is comparable between years, as Salt et al. (2013) found that the contribution of this water mass varied by only 3 % from 2001-2008. However, given the large volumes of water involved, further studies are required to deepen our understanding of this process.

During late summer, the time of observations, both primary production and remineralisation are significant ongoing processes (Bozec et al., 2005; 2006; Schiettecatte et al., 2007), thus making an assessment of anthropogenically-driven change complicated. In an attempt to differentiate between the contribution of the atmosphere and biological processes, we have calculated DICbio. However, it has been previously noted that in the North Sea, changes in the end members of its constituent water masses can also significantly impact the carbonate system (Thomas et al., 2008; Salt et al., 2013). To account for any water mass changes we use DICbase which shows that in the NNS from 2001 to 2005, the average background DIC increased by 9 μmol kg⁻¹ and from 2005 to 2008 it decreased by 2 μmol kg⁻¹. These values are consistent with trends in DICatm (calculated effect of atmospheric pCO₂ on DIC, see Section 2.2.4) of +13 ± 3 μmol kg⁻¹ from 2001 to 2005 and -7 ± 3 μmol kg⁻¹ from 2005 to 2008, and fall within our error estimates. As such, during these two time periods we see no significant evidence in the NNS of additional DIC from different North Sea water masses. In contrast to this, from 2008 to 2011, a theoretical atmospheric driven increase in DICatm of +15 μmol kg⁻¹ is calculated; however, we observe a decrease of 20 μmol kg⁻¹ in DICbase. In 2011, the water column inventory of AOU of the NNS (not shown) and at our representative station (60 mmol m⁻³), is higher than in previous years, indicating that there is a greater amount of remineralisation taking place. This is supported by an increase in mean water column DICobs of 6 μmol kg⁻¹ in the sub-surface layer (not shown).
A contributing factor that could lead to elevated DICobs in 2011 compared to other years is the presence of a weaker anti-clockwise circulation within the North Sea. Salt et al. (2013) found that the strength of the shelf pump of CO2 is enhanced in years of positive North Atlantic Oscillation Index (NAOI), and we suggest that here we see the opposite effect during negative NAOI conditions (winter (DJFM) NAOI was -1.9, 0.12, 2.1 and -1.57, for 2001, 2005, 2008 and 2011, respectively [https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based, 2015]). A weaker circulation would result in a higher proportion of metabolic DIC outgassing to the atmosphere as opposed to being transported into the North Atlantic. This is supported by the reduction in biological pCO2 flux in the surface layer (19 % in 2011) and by a higher water column inventory of AOU (19 % in 2011) and by a higher water column inventory of AOU (Fig. 6(b)) and DICobs (Fig. 6(a)) in 2011, as evident at our representative NNS station, in comparison to other years.

In contrast to the NNS, DICbase in the SNS shows consistent behaviour indicating a steady-state. Fig. 5 (DICbio) shows that remineralisation dominates the DICbio signal in the SNS in August, leading to elevated DICobs compared to the NNS. As we have shown that DICbase in the SNS does not vary significantly, one would expect the increases in surface DICobs to be driven by a combination of biological activity and exchange with the atmosphere.

4.2. pCO2

The average CO2 flux calculations for each region indicate that for all years, the SNS acted as a summertime source of CO2 to the atmosphere (CO2 outgassing, negative CO2 flux) whilst the NNS acted as a sink (CO2 invasion, positive CO2 flux) (Fig. 8(a)). This summertime distinction between the supersaturated SNS and undersaturated NNS has been well described in the literature (Thomas et al., 2004; 2005a; Bozec et al., 2005, Schiettecatte et al., 2007; Prowe et al., 2009) and has also been reported in other coastal regions, which show a divide between stratified and mixed systems (Marrec et al., 2013). Over the 2001-2011 decade, the ΔpCO2 in the NNS becomes less negative (i.e. weaker undersaturation). However, this appears to have no impact on the average CO2 flux which we find, with the exception of 2008, where the mean was at a minimum (0.97 ± 0.36 mmol m⁻² d⁻¹), to be relatively consistent at 1.65 (± 0.27), 1.58 (± 0.52), and 1.87 (± 0.89) mmol m⁻² d⁻¹ in 2001, 2005 and 2011, respectively. We do note that a mean positive (and therefore supersaturated) ΔpCO2 of 13.4 μatm was calculated for the NNS in 2011, indicating that if the sea surface temperatures had not been as cold as those observed during 2011 (Table 1), the NNS could have acted as a summertime source of CO2 to the atmosphere, a situation that to our knowledge, has not been observed before. As yet this phenomenon has not impacted upon the direction of the average CO2 flux for this region; indeed it remained positive (indicating undersaturation) throughout the decade, therefore the NNS acted as a consistent sink for atmospheric CO2.

Our estimated average CO2 fluxes are somewhat lower than the summertime flux of 2.4 to 3.8 mmol m⁻² d⁻¹ calculated by Bozec et al. (2005) for the NNS and -4.2 (± 0.2) mmol m⁻² d⁻¹ calculated by Schiettecatte et al. (2007) for the SNS, both of whom used pCO2 measurements for their calculations, in contrast to the calculated pCO2 used here. We account for this difference in our error calculations, following a study of the internal consistency of the carbon system in the North Sea by Salt et al. (2015), see Sections 2.2.2 and 2.2.4. We therefore propose that differences in the flux estimates may be the result of a combination of the following: interannual variability; our use of monthly-averaged wind speed data as opposed to the high resolution datasets used by other studies; and the varying definitions of geographic areas: Bozec et al. (2005) divide the NNS and SNS at 54°N, compared to 56°N here, and Schiettecatte et al. (2007) focus on the smaller area of the Southern Bight.

In contrast to the NNS, from 2001-2008 the average CO2 fluxes in the SNS were variable (-0.37, -0.19, and -0.56 mmol m⁻² d⁻¹ in 2001, 2005 and 2008, respectively), and again lower than the flux of Bozec et al. (2005) (-0.8 to -1.7 mmol m⁻² d⁻¹). In 2011 we find a substantial increase in average CO2 flux (2.23 ± 0.88 mmol m⁻² d⁻¹), exceeding the upper limit of the flux estimates by Bozec et al. (2005) but still smaller than estimated by Schiettecatte et al. (2007) for the Southern Bight. Therefore in 2011 the SNS acted as a strong source of CO2 to the atmosphere, relative to the previous years of our study. This is reflected in the mean ΔpCO2, which becomes more positive over the 2001-2011
(i.e. increase in the difference between pCO_{2sw} and pCO_{2atm} and stronger supersaturation), and indicates that the SNS became a stronger source of CO$_2$ over the progression of the 2001–2011 decade. The effect of temperature normalisation is evident in a comparison of the mean ΔpCO_2 and $\Delta npCO_2$ in this region; in 2001 and 2008, when mean SST $>16^\circ$C, normalising the pCO_2 data to 16 °C resulted in less positive $\Delta npCO_2$ than ΔpCO_2, i.e. weaker supersaturation. The opposite is true for 2005 and 2011. During these summers mean SST $<16^\circ$C, thus normalising the pCO_2 data led to an increase from ΔpCO_2 to $\Delta npCO_2$, representative of stronger supersaturation. On a basin-wide scale, with the exception of 2001, where there is little difference between ΔpCO_2 and $\Delta npCO_2$, attributable to the aforementioned high SST in the SNS, $\Delta npCO_2$ is less negative than ΔpCO_2 in 2005 and 2008, indicative of weaker undersaturation, and more positive in 2011, indicative of stronger supersaturation.

By investigating the components that either dampen or enhance the CO$_2$ flux (Fig. 8(b), (c), (d)) we find that primary productivity accounts for a significant proportion of the NNS average CO$_2$ flux, as observed previously (Prowe et al., 2009); however the biological flux shows relatively little variation between years, with uptake ranging from 0.36 to 0.65 mmol m$^{-2}$ d$^{-1}$. In stark contrast to this, we find that temperature effects show significant inter-annual variability within both regions of the North Sea. The impact of temperature on CO$_2$ fluxes was largest in 2011, which was also the year that we observed the greatest difference in mean temperature between the NNS and SNS and the largest difference in average CO$_2$ flux between the two regions in all four years. We also find that the wind component in the NNS appears to decrease over the 2001-2011 decade. This may be partly due to changes in the timing of our observational window, or to variability of wind velocity at seasonal and decadal timescales. With the predicted rises in global sea surface temperature (SST) (Rhein et al., 2013) it is possible that summertime SST in the NNS and SNS and the largest difference in average CO$_2$ flux between the two regions in all four years. We also find that the wind component in the NNS appears to decrease over the 2001-2011 decade. This may be partly due to changes in the timing of our observational window, or to variability of wind velocity at seasonal and decadal timescales.

With the predicted rises in global sea surface temperature (SST) (Rhein et al., 2013) it is possible that summertime SST in the NNS could rise sufficiently to cause the region to switch from undersaturation (CO$_2$ sink) to supersaturation (CO$_2$ source). This is evident in our calculations of ΔpCO_2 and $\Delta npCO_2$ in the NNS in 2011 (see Table 1), which are -27.8 pmol and 13.4 pmol, respectively. As previously mentioned, mean SST was particularly low in the summer of 2011 (13.3 °C), therefore our calculations indicate that if the SST in the NNS had been 16 °C, the $\Delta npCO_2$ would have been positive, and average CO$_2$ flux would have been negative (CO$_2$ source). Coupled with the potential strengthening of the SNS as a source of CO$_2$, as indicated by a more positive $\Delta npCO_2$ than ΔpCO_2 in this region in 2011, this could result in a basin-wide reduction of CO$_2$ drawdown, which in turn may have potential ramifications for the efficiency of the North Sea as a continental shelf pump with respect to CO$_2$.

4.3. Implications of rapidly increasing surface DIC and pCO$_2$

Regardless of the causal factors, the observed rapid increases in DIC and pCO$_2$ over the 2001-2011 decade have implications for the chemical composition of the North Sea. Here we investigate pH and buffering capacity, which is described by the Revelle factor:

\[
R.F. = (\delta CO_2/CO_2)/(\delta DIC/DIC)
\]

which is the relative change of surface water pCO$_2$ divided by the ensuing relative change of DIC in surface waters. With the increasing CO$_2$ in the atmosphere in our era, the R.F. tends to increase, i.e. the buffer capacity tends to decrease over the years. The underlying mechanism relates to the decreasing availability of the carbonate ion (CO$_3^{2-}$) for the formation of bicarbonate ions (HCO$_3^-$) when CO$_2$ reacts with seawater. With increasing CO$_2$ uptake, an increase in $[CO_3^{2-}]_\text{sw}$ results in a decrease of $[CO_2]_\text{sw}$, and therefore a reduction in the capacity to buffer against further CO$_2$ uptake, or an increased Revelle factor (Takahashi et al., 1980; Sarmiento and Gruber, 2006).

In order to evaluate the changes in the pH and the Revelle factor of the surface waters between years, we corrected for biological activity using the same method used to calculate DIC$_{bio}$ (see Section 2.2.4), thereby using measured A_P and the atmospheric pCO$_2$ for each year (assuming equilibrium) to calculate abiotic pH (Table 2) and abiotic Revelle factor (Table 3).

The biogeochemical divide in the North Sea is once again evident when comparing the mean pH and Revelle factor for each region with their abiotic equivalents (see Fig. 9 and Tables 2 and 3). In the NNS, biology is dampening the effects of anthropogenic CO$_2$ invasion, as a net autotrophic system results in DIC uptake, causing a subsequent increase in mean pH (abiotic pH < pH) and decrease in mean Revelle factor. The opposite is true in the SNS, which is net heterotrophic, thus the effects of increasing atmospheric CO$_2$ are enhanced, as respiration lowers pH further (abiotic pH > pH), and results in a higher Revelle factor.

In the NNS, mean abiotic pH decreased over the 2001–2011 decade from 8.0819 to 8.0606, which corresponds to an annual increase in [H$^+$] of 4.1630 x 10$^{-13}$ mol yr$^{-1}$. At a pH level of 8.0819 (2001), this corresponds to a pH change of -0.0022 pH units yr$^{-1}$. In the SNS, mean abiotic pH decreased from 8.0859 to 8.0638, which corresponds to an annual increase in [H$^+$] of 4.2840 x 10$^{-13}$ mol yr$^{-1}$. This results in a comparable pH change of 0.0023 pH units yr$^{-1}$, from a pH of 8.0859 (2001) (Table 2). This is not altogether surprising given that a basin-wide atmospheric pCO$_2$ was used to calculate abiotic pH. These rates do compare well with the trends observed in seven CO$_2$ system time-series studies in various locations, reported by Bates et al. (2014), in particular with the rate of -0.0026 pH units yr$^{-1}$ observed in the Irminger Sea, and with the pH decline of 0.002 pH units yr$^{-1}$ simulated by Lorkowski et al. (2012).

For comparison (Fig. 9), without discounting biological activity, mean pH in the NNS decreased over the 2001-2011 decade from 8.1781 to 8.0904, which corresponds to an annual increase in [H$^+$] of 1.4849 x 10$^{-10}$ mol yr$^{-1}$, corresponding to a pH change of -0.0096 units yr$^{-1}$ from a starting pH of 8.1781 (2001). In the SNS, mean pH decreased from 8.0715 to 8.0344, which corresponds to an annual increase in [H$^+$] of 7.5650 x 10$^{-11}$ mol yr$^{-1}$, resulting in a pH change of -0.0039 pH units yr$^{-1}$, from a pH of 8.0715 (2001) (Table 2).

Furthermore, as a result of increasing surface DIC, and despite the removal of biological effects, we calculate a decadal reduction in the buffering capacity (increasing Revelle factor, see Table 3) of the surface waters of the North Sea, which is to be expected given the continued invasion of atmospheric CO$_2$. As atmospheric pCO$_2$ continues to rise, the reduction of the buffering capacity will accelerate, as model studies have shown that at higher Revelle factors, despite a constant rise in atmospheric pCO$_2$, less DIC and therefore a reduced CO$_2$ flux is required to reach equilibrium between surface waters and the overlying air (Thomas et al., 2007, Lorkowski et al., 2012). This could further explain the consistent increase in ΔpCO_2 calculated in the NNS.

In contrast, in the supersaturated SNS, the secular trend of rising atmospheric pCO$_2$ should lead to a reduction in ΔpCO_2, yet we see the opposite. Several processes can be thought of, which may contribute to this observed scenario. The overall rising SST (Rhein et al., 2013) would raise the surface water pCO$_2$, although this signal can be overridden sporadically by shorter-term variability. Furthermore, the reduction in fluvial input of nitrate to the North Sea since the late 1990’s (Provost et al., 2010; Borges and Gypens, 2010) could lead to a decrease in CO$_2$ fixation in the SNS, and in turn would shift the trophic balance further toward heterotrophy, thus higher surface water pCO$_2$. As discussed in Burt et al. (2015), the recent reduction of fluvial nitrate input also has the potential to diminish the release of respiratory A_P, which in turn would result in a stronger decline in pH, than that which would occur purely due to atmospheric pCO$_2$ increase. This scenario is depicted in our comparison of pH and abiotic pH in this region ($\text{pH} = \text{abiotic pH}$) (see Table 2, Fig. 9(c), (d)). Similarly, for a given level of heterotrophy and associated metabolic DIC release, a reduction in A_P would result in an increase in pCO$_2$, with a subsequent increase in ΔpCO_2 and a
strengthening of the supersaturation of the SNS, just as we observe in
the 2001–2011 decade. Future research is required to monitor the AR
signal over seasonal cycles and at a higher resolution in order to inves-
tigate this further.

Once the biological signal is removed, we observe the effects of in-
creasing atmospheric pCO2 throughout the North Sea, as increasing

\[\text{[H}^+\text{]} \] (decreasing pH) and \[\text{[HCO}_3^-\text{]} \], \(\Omega_{\text{calcite}} \) and \(\Omega_{\text{Aragonite}} \) (Table 3). This phenomenon, termed “Ocean acid-
ification” is well documented, the effects of which are multifaceted.
Changing pH may affect the speciation of other chemical constituents of
seawater, including bio-essential trace-elements, such as iron
(Miller et al., 2009). Decreasing \(\Omega_{\text{calcite}} \) and \(\Omega_{\text{Aragonite}} \) impacts marine

Table 2
Mean values of pH and abiotic pH, with corresponding changes to \[\text{[H}^+\text{]} \] and calculated rates of change of pH and Revelle factor for the North Sea basin (based on 262 data points), the NNS
(136 data points) and SNS (126 data points), using gridded surface data (< 10 m). All abiotic parameters are calculated using \(A_R \) and \(p\text{CO}_2\text{atm} \), thus assuming equilibrium. All parameters are quoted with calculation error (CE) as outlined in Section 2.2.2, with CE averaged between comparable years and divided by the number of years to estimate error for the rate of change.

<table>
<thead>
<tr>
<th>Year</th>
<th>pH</th>
<th>Corresponding [H(^{+})] (mol)</th>
<th>Difference in [H(^{+})] (mol)</th>
<th>Rate of change of [H(^{+})] (mol yr(^{-1}))</th>
<th>Change in [H(^{+})] from 2001 to 2011 (mol)</th>
<th>Corresponding pH change from 2001 (units yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin-wide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>8.1268 ± 0.0092</td>
<td>7.4679 x 10^{-8}</td>
<td>5.9140 x 10^{-10}</td>
<td>0.14785 x 10^{-10}</td>
<td>1.7118 x 10^{-8}</td>
<td>-0.0068</td>
</tr>
<tr>
<td>2005</td>
<td>8.0937 ± 0.0093</td>
<td>8.0706 x 10^{-8}</td>
<td>8.2140 x 10^{-10}</td>
<td>9.3800 x 10^{-11}</td>
<td>1.1718 x 10^{-9}</td>
<td>-0.0096</td>
</tr>
<tr>
<td>2008</td>
<td>8.0786 ± 0.0078</td>
<td>8.3407 x 10^{-8}</td>
<td>5.9140 x 10^{-10}</td>
<td>9.3800 x 10^{-11}</td>
<td>1.1718 x 10^{-9}</td>
<td>-0.0096</td>
</tr>
<tr>
<td>2011</td>
<td>8.0635 ± 0.0066</td>
<td>8.6397 x 10^{-8}</td>
<td>2.9900 x 10^{-10}</td>
<td>9.9667 x 10^{-11}</td>
<td>1.1718 x 10^{-9}</td>
<td>-0.0068</td>
</tr>
</tbody>
</table>

Table 3
Mean values of Revelle factor and abiotic parameters for the North Sea basin (based on 262 data points), the NNS (136 data points) and SNS (126 data points), using gridded surface data (< 10 m). All abiotic parameters are calculated using \(A_R \) and \(p\text{CO}_2\text{atm} \), thus assuming equilibrium. All parameters are quoted with calculation error (CE) as outlined in Section 2.2.2, with CE averaged between comparable years and divided by the number of years to estimate error for the rate of change.

<table>
<thead>
<tr>
<th>Year</th>
<th>Revelle Factor</th>
<th>Rate of change of Revelle Factor (yr(^{-1}))</th>
<th>Abiotic Revelle Factor (µmol kg(^{-1}))</th>
<th>Abiotic [CO(_3)] (µmol kg(^{-1}))</th>
<th>Abiotic [HCO(_3)] (µmol kg(^{-1}))</th>
<th>Abiotic (\Omega_{\text{calcite}})</th>
<th>Abiotic (\Omega_{\text{Aragonite}})</th>
</tr>
</thead>
</table>
organisms that form calcareous shells. Many calcifying species exhibit reduced calcification in laboratory experiments under high-CO2 conditions (Doney et al., 2009). Notably shellfish calcification was found to decrease in experiments (Gazeau et al., 2007). The manifestations of these impacts are potentially ecosystem-wide, which could be of particular concern in regions of high economic importance, such as shelf seas, with commercially important fisheries, as for example, the extensive shellfish populations and shellfish fisheries found in the North Sea region.

If, as projected, atmospheric pCO2 continues to rise, it is possible that the synergistic effects of a decline in buffering capacity and rising SST could lead to a reduction in the efficiency of the North Sea as a CO2 sink, and subsequently as a continental shelf pump. Given that the estimated net uptake of coastal and marginal seas is 20% of the ocean's capacity for CO2 storage (Thomas et al., 2004), the occurrence of a similar phenomenon in other shelf-pump regions could have significant negative impacts on the capacity of the oceans to mitigate anthropogenically-induced climate change.

5. Concluding remarks

Here we present observational evidence that suggests that DIC and pCO2 in the surface waters of the North Sea basin are increasing at a rate that is faster than concurrent increases in atmospheric pCO2. However, upon further investigation we conclude that these observations are largely the result of biological activity, masking the signal of increasing CO2 concentrations that mirror those in the atmosphere due to anthropogenic input. We find that biological activity mitigates rising atmospheric pCO2 in the NNS, and enhances its effects in the SNS. We suggest a complex interplay exists between the effects of climate change and variability in both biological activity and terrestrial influence of coastal systems.

Furthermore, we propose that the synergistic effects of biological activity, terrestrial influences, and a reduction in buffering capacity due to the invasion of increasing atmospheric CO2, coupled with projected rises in SST, are not only causing a reduction in pH, but also a weakening of the undersaturation of the NNS and a strengthening of the supersaturation of the SNS. In a future with higher SST and higher atmospheric pCO2, this may lead to a significant switch in the NNS from a summertime sink to a source of CO2 with potentially important ramifications for the efficiency of the North Sea as a continental shelf pump for CO2. A resultant reduction in the transport of CO2 to intermediate waters of the North Atlantic would generate a positive feedback loop due to a reduced capacity of the North Sea basin to mitigate the continuing rise in atmospheric pCO2.

The continued assessment of the North Sea carbon system would further facilitate the quantification of multi-annual versus long-term trends. Further investigations into other important continental shelf pumps of other coastal seas around the world are required to assess the state of their efficiency and ability to mitigate the continuing rise in atmospheric pCO2.

Acknowledgments

We would like to take the opportunity to thank the captains and crews of the R.V. Pelagia, the nutrients group at NIOZ, and the two anonymous reviewers for their constructive comments that helped to improve this paper. We gratefully acknowledge the data produced in all four cruises by several colleagues, at the time working at NIOZ, as well as by Dr. Alberto Borges and his colleagues at the Chemical Oceanography Unit, University of Liège. This program was supported by the National Programme for Sea and Coastal Research (ZKO) of the Netherlands Organisation for Scientific Research (NWO) and CARBOOCEAN.

References

