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The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-

European Shelf (471410–631530N, 15150W–131550E) for the years 1993–1996. Carbon fluxes were

calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This

period was chosen because it corresponds to a shift from a very high winter-time North Atlantic

Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for

the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was

about 1 1C lower than in 1995; in the southern part of the North Sea the difference was even larger (up

to 3 1C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in

winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased

precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic

and organic) riverine carbon load to the North Sea from 476 Gmol C yr�1 in 1995 to 340 Gmol C yr�1 in

1996. In addition, the North Sea took up 503 Gmol C yr�1 of CO2 from the atmosphere. According to our

calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m�2 yr�1, for both

years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS;

190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the

SNS is a net-autotrophic system (net ecosystem production NEP40) but released CO2 to the

atmosphere: 159 Gmol C yr�1 in 1995 and 59 Gmol C yr�1 in 1996. There, the temperature-driven

release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes

prevail (NEPo0), 662 and 562 Gmol C yr�1 were taken up from the atmosphere in 1995 and 1996,

respectively. Stratification separates the productive, upper layer from the deeper layers of the water

column where respiration/remineralization takes place. Duration and stability of the stratification are

determined by the meteorological conditions, in relation to the NAO. Our results suggest that this

mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has

a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North

Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and

was found to be net-heterotrophic, more markedly in 1996 than in 1995.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Continental shelves play a key role in the global cycling of
biogeochemically essential elements. Based on observations in
the East China Sea, Tsunogai et al. (1999) speculated about global
consequences if all shelves, like the East China Sea, would act as a
ll rights reserved.

ätsch).
sink for atmospheric carbon dioxide and as a source of carbon for
the open ocean. The concept of the ‘‘continental shelf pump’’ since
has been confirmed also for the North Sea (Thomas et al., 2004;
Bozec et al., 2005). This concept describes physical or biological
mechanisms by which atmospheric CO2 is transported via the
continental shelf sea into the deeper adjacent ocean. For this
process to be effective several prerequisites of the marine shelf
system are required: strong biological activity, partly sustained by
anthropogenic nutrient inputs, and efficient exchange with the
adjacent ocean. In the case of the North Sea, as part of the
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Northwest-European Shelf, the seasonal stratification of the
northern part decouples production and decomposition of organic
matter within the upper and the lower water column, respec-
tively, thus enhancing the pump efficiency (Thomas et al., 2004).

Carbon-related measurements in the North Sea started in the
late 1980s (Pegler and Kempe, 1988; Kempe and Pegler, 1991;
Hoppema, 1991) and have been continued in the following years.
In most cases the southern North Sea and its coastal areas were in
the focus of these observations (Frankignoulle et al., 1996; Borges
and Frankignoulle, 1999, 2002, 2003; Frankignoulle and Borges,
2001; Schiettecatte et al., 2006, 2007; Borges et al., 2008).
Regional model studies also concentrated on the Southern Bight
and the Belgian coastal zone (Gypens et al., 2004, 2009; Borges
and Gypens, 2010). Thomas et al. (2005a) were the first to
calculate an observation-based carbon budget for the whole North
Sea covering a complete annual cycle.

In order to overcome some of the required assumptions for the
observation-based budget, such as climatological water exchange
with the North Atlantic or averaged dissolved inorganic carbon
(DIC) concentrations at the boundaries, the ecosystem model
ECOHAM was applied to the Northwest-European Shelf. With this
tool, Prowe et al. (2009) provided insight into the controlling
mechanisms for the partial pressure of CO2 (pCO2) for the two
biogeochemical regions of the North Sea, the shallower perma-
nently mixed southern and the seasonally stratified northern parts.

Pätsch and Kühn (2008; hereafter PK1) introduced the
ecosystem model ECOHAM and discussed the nitrogen fluxes for
the years 1995 and 1996. Although it was found that riverine
nutrient inputs were larger in 1995, the nitrogen assimilation, i.e.
the Redfield primary production, of the whole North Sea was
nearly the same for both years. The key to this seemingly
counterintuitive result was the different behavior of the southern
and the northern North Sea. For the former, primary production is
clearly related to riverine nutrient loads. In the latter, the supply
of inorganic nitrogen into the euphotic zone from deeper layers
(and much less the river input) controls the primary production.
The supply of inorganic nitrogen to surface layers is directly
linked to the stability of stratification of the water column. The
higher sea surface temperature (SST) in 1995 compared to 1996
induced a stronger, more stable stratification in 1995. Conse-
quently, during summer 1996, the inorganic nitrogen flux into the
upper layer was larger and led to higher annual net primary
production (ANPP) in the northern North Sea, compensating for
the decrease of the primary production in the southern North Sea
due to the lower riverine nitrogen loads.

To be consistent with PK1, in the present work we also have
chosen the mid-nineties because they exhibit a shift from a very
high winter-time North Atlantic Oscillation Index (NAOI) in 1994/
1995, to an extremely low one in 1995/1996. According to
Dippner (1997), the mean winter SST in NAOI-low years is
generally lower than in years with high NAOI. Indeed, Loewe
(1996) observed an extremely low SST in the North Sea during the
first half of the year 1996. In NAOI-high years westerly winter
winds dominate, whereas in NAOI-low years winds from easterly
directions prevail.

Less precipitation over the drainage area of the continental
rivers led not only to a reduction in the total riverine nitrogen
input to the North Sea from 76 Gmol N yr�1 in 1995 to 52 Gmol
N yr�1 in 1996, but also to a corresponding decrease of the
riverine carbon loads from 476 Gmol C yr�1 in 1995 to 340 Gmol
C yr�1 in 1996.

In the present paper, we present the first model-derived
annual carbon budgets for the inner shelf region, i.e., for the North
Sea (511,725 km2) and its sub-regions, for the years 1995 and
1996. We compare simulated concentrations of near-surface
dissolved inorganic carbon (DIC) with observations made in
2001/2002 (Thomas et al., 2004, Bozec et al., 2006). We
investigate whether the consideration of decoupling of carbon
from nitrogen uptake by phytoplankton is necessary for a realistic
simulation of the DIC observations and quantify the CO2 air–sea
flux for the two years. We show that the drastic shift in the NAOI,
the dominant climate mode over the North Atlantic, has
consequences for the North Sea biogeochemistry and in particular
for the air–sea flux of CO2 and its control by physical and
biological processes.
2. Model setup

The details of the ecosystem model ECOHAM were described in
PK1. Here, we only present the processes, which are of importance
for the simulation of the carbon cycle.

The model area, comprising the greater part of the Northwest-
European Shelf, is shown in Fig. 1. This figure also depicts the
boundaries of the North Sea used for calculating the carbon
budgets. Additionally, we defined a boundary between southern
and northern North Sea along 55.41N, i.e., north of the Dogger
Bank.

2.1. Non-Redfield ratios, excess production and calcium carbonate

formation

Because the model encompasses both the carbon and the
nitrogen cycle, the selection of the molar C:N ratios used is
important. We chose fixed, but different C:N ratios for the
different biotic compartments: The Redfield ratio C:N¼6.625 for
phytoplankton, C:N¼5.5 for zooplankton, and C:N¼4.0 for
bacteria. The biogenic compartments ‘dissolved organic matter’
and ‘detritus’, on the other hand, have free-floating C:N ratios. In
particular, the C:N ratio of particulate organic matter increases
due to preferential nitrogen remineralization during sinking
(Thomas et al., 1999; Pätsch et al., 2002). In order to maintain
the prescribed molar C:N ratios within the zooplankton and
bacteria compartments additional carbon or nitrogen fluxes were
introduced (see PK1—Appendix).

In addition to the so-called Redfield primary production
(NPPred) which is determined by the availability of nitrogen, the
model allows for ‘excess’ or ‘overflow’ (Fogg, 1983) production
(NPPexc) or, as Toggweiler (1993) called it, carbon overconsump-
tion, defined as carbon fixation by photosynthesis during periods
when surface layers are depleted in bioavailable nitrogen
(Thomas et al., 1999). This additionally fixed carbon is released
in the form of dissolved or colloidal extracellular carbohydrates
which tend to coagulate forming transparent exopolymer parti-
cles (TEP) (Engel, 2002; Schartau et al., 2007). In the model the
excess carbon is immediately channeled into the pool of slowly
degradable semi-labile dissolved organic carbon, which is even-
tually metabolized by the bacteria (on a time scale of 9 months).
Thus, the model differentiates between ‘normal’ exudation by
phytoplankton, the result of which is labile dissolved organic
matter with Redfield composition (Fogg, 1983), and an excess
exudation of semi-labile organic carbon with higher C:N ratios.

The total net primary production (NPP) is defined as

NPP¼NPPredþNPPexc: ð1Þ

Given the uncertainty in the order of magnitude of the
overflow production in the North Sea we introduced a scaling
factor (fexc) which allows us to vary the strength of NPPexc: For
fexc¼0.0, only Redfield production takes place; for fexc¼1.0,
maximum (only light-limited) overflow production is possible.
For this simulation we chose fexc¼0.5; when allowing for Redfield



Fig. 1. Model area, bottom topography and boundaries of the North Sea budgeting area (bold lines). Additionally the (arbitrarily defined) boundary between northern and

southern North Sea is indicated (dashed line). The outer boundaries are denoted as NW—north-western boundary, SK—Skagerrak, and EC—English Channel.
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production only (fexc¼0.0), the near-surface DIC concentrations
during summer remained higher than observed. Thus, we could
avoid limitations introduced in an earlier study (Prowe et al.,
2009) by prescribing different values of fexc for the SNS and the
NNS (for a more detailed discussion see Section 4.3).

The model also simulates the production of calcium carbonate
(CaCO3), but in a very simplified way. The phytoplankton
produces calcite whenever it produces organic matter (OM), the
corresponding molar production ratio is CaCO3-C:OM-C¼1:70,
according to a lower estimate of the ratio between carbonate
production and primary production in the ocean (Chung et al.,
2003; Langer, 2008). This approach obviously neglects the specific
seasonality and the regional differences of the CaCO3 production
by coccolithophorids, but supplies a carbonate production on the
Northwest-European shelf which is in the range of global
estimates. The carbonate shells become part of the fast-sinking
detritus and are dissolved while sinking through the water
column and in the sediment layer. The dissolution rate is a
function of the carbonate oversaturation (see PK1—Appendix).
2.2. External sources, initial and boundary conditions

In addition to high inorganic and organic nitrogen loads (see:
PK1) rivers discharge considerable amounts of inorganic and
organic carbon into the North Sea (Thomas et al., 2005a).
According to the well known fact that large parts of this organic
carbon load are retained/degraded in the estuaries (Raymond and
Bauer, 2000; Wiegner and Seitzinger, 2001; Abril et al., 2002) and
based on observations that the remaining DOC and at least half of
the POC can be viewed as refractory (J. Hartmann, pers. comm.)
we concluded that using a riverine TOC input of 760 Gmol C yr�1

(RWS, 1992) would be much too high. We therefore assumed only
10% of the total organic riverine carbon load to be bioavailable,
adding it to the slowly sinking detritus pool. The value of
76 Gmol C yr�1 agrees quite well with the DOC/POC input used
by Thomas et al. (2005a).

At the open boundaries (outside the North Sea region) we
prescribed depth-dependent monthly mean values of DIC con-
centrations and total alkalinity (TALK) values supplied by the
Max-Planck-Institute for Meteorology, Hamburg (U. Mikolaje-
wicz, pers. comm.). These model data were obtained from the
biogeochemical model HAMOCC5 (Maier-Reimer, 1993; Maier-
Reimer et al., 2005) embedded in the physical ocean model of the
Max-Planck-Institute for Meteorology (MPIOM, Marsland et al.,
2003). The MPIOM was forced with NCEP atmospheric reanalysis
data (Kalnay et al., 1996) for 1948–2007 and pCO2 in the
atmosphere. The grid configuration was designed to optimally
resolve the North Atlantic and the Northwest-European shelf.

For initialization and in case of TALK for restoring, observed
data (CANOBA project; Thomas et al., 2004) were used for the area
of the North Sea. As these data were taken in 2001/2002 we
reduced the observed DIC concentrations by 9 mmol kg�1. This
corresponds to an annual increase by 1 mmol kg�1 yr�1, which
reflects the rise of atmospheric CO2 concentrations by approxi-
mately 1.6 ppm yr�1 at a Revelle factor of 11 (Thomas et al.,
2008). Boundary conditions of nitrate were derived from the
World Ocean Atlas 2001 (Conkright et al., 2002). The TALK fields
for the North Sea were interpolated to daily values at each grid
point; these values were used for restoring the simulated TALK
data with a relaxation time scale of two weeks.

Using prescribed alkalinity concentrations and dynamically
varying DIC concentrations also takes into account the shift in the
carbonate system due to biological activities: DIC uptake (primary
production) increases the pH and DIC release (respiration)
decreases the pH.

Other effects, which would be handled by a dynamic approach
of alkalinity, are ignored by the present model configuration. With



Fig. 2. Near-surface DIC concentrations (in mmol C kg�1) for (a) February, (b) May, (c) August, and (d) November 1995 as obtained from the simulation. For comparison the

observed DIC concentrations for (e) February 2002, (f) May 2002, (g) August/September 2001, and (h) November 2001 are shown.

W. Kühn et al. / Continental Shelf Research 30 (2010) 1701–17161704



Fig. 2. (Continued)
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our diagnostic approach we neglect the increase of alkalinity
during primary production by nitrate assimilation and ammonia
release during degradation of organic material. Likewise, we
ignore effects of decreasing TALK during ammonia uptake and
nitrification. However, DIC variations (e.g. during nitrate assim-
ilation) are larger than nitrate variations by at least a factor of
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6.625 (Redfield ratio). Moreover, nitrate produced by nitrification
does not play a role for the TALK budget, because the decrease of
TALK due to nitrification (two units) is compensated by a
corresponding increase during nitrate assimilation (one unit)
and ammonium release during degradation (one unit). Modifica-
tions of TALK by calcification and calcite dissolution are not
explicit in the model.
2.3. The air–sea flux

The air–sea flux of CO2 was calculated according to the
formula:

FðCO2Þ ¼ kðpCOair
2 -pCOwat

2 Þ, ð2Þ

where pCOair
2 denotes the prescribed partial pressure of CO2 in the

atmosphere, pCOwat
2 the partial pressure of CO2 in the near-surface

water and k the wind-dependent gas transfer or piston velocity.
We used the empiric expression derived by Wanninkhof (1992)
for the gas transfer velocity. According to a sensitivity study, the
use of other parameterizations of k (Wanninkhof and McGillis,
1999; Nightingale et al., 2000) changed the resulting annual net
air–sea flux of CO2 by less than 5%. The annual time series for the
partial pressure of atmospheric CO2 was calculated based on the
CANOBA data set taking into account an annual increase of
1.6 matm yr�1. The pCOwat

2 was calculated from the water
temperature, salinity, the DIC concentration and TALK by applying
the equilibrium equations of the carbonate system using the
carbonic acid constants according to Mehrbach et al. (1973) as
refit by Dickson and Millero (1987).
Fig. 3. Regional distribution of the annual air–sea flux of CO2 (in mol
2.4. The benthic layer

Sinking organic and inorganic (CaCO3) material is captured in a
bottom layer below the deepest grid cell, where it is differentially
remineralized, i.e. with different remineralization rates for
organic carbon and nitrogen. The carbonate is dissolved with
the saturation-dependent dissolution rate of calcite valid for the
corresponding water depth (see PK1—Appendix).
3. Results

3.1. DIC concentrations

Having validated the model with regard to nitrate and
chlorophyll (PK1), the most important model state variable to
compare with observations is the DIC concentration. Fig. 2a–d
shows the regional distribution of the simulated near-surface DIC
concentrations, for February, May, August, and November 1995.
For comparison, the corresponding DIC concentrations measured
in the CANOBA project during the years 2001/2002 are shown
(Fig. 2e–h; Thomas et al., 2004; Bozec et al., 2006), because data
for the mid-nineties were not available.

The observations show a clear seasonal pattern: high DIC
concentrations in winter (February) and low DIC concentrations
in late summer (August/September). This seasonal signal is
reproduced by the simulations. The observed regional distribution
patterns—e.g. highest concentrations mostly in the southern
North Sea, particularly in the German Bight and along the Belgian,
Dutch, and German continental coast—are also captured by the
C m�2 yr�1) for 1995 and 1996 as obtained from the simulation.



Fig. 4. Seasonal variability of the simulated air–sea flux of CO2 (in mmol C m�2 month�1) for 1995: (a) February, (b) May, (c) August, and (d) November.
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model results. A closer look, however, reveals several deviations
between observed and simulated near-surface DIC concentra-
tions, mainly during spring and summer. For May 1995 the
simulated DIC concentrations are higher than those observed in
May 2002, the difference being highest along the Norwegian
coast. In late summer, the modeled DIC concentrations in the
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northern North Sea are also higher than the observed values.
Especially, the very low DIC values observed in the Skagerrak and
off the British coast are not reproduced in the simulation. Striking
are the very high simulated concentrations off the Rhine and Elbe
rivers mouths. It should, however, be stressed that we are
comparing observations and model data from different years;
interannual variability of river runoff might play an important
role in causing parts of these differences (Radach and Pätsch,
2007). Generally, the quality of the model results depends
strongly on the availability and quality of the outer sources of
DIC (riverine inputs, input from the Baltic and from the North
Atlantic).

3.2. Fluxes and budgets

3.2.1. Air–sea CO2 fluxes

In Fig. 3, the annual air–sea flux of CO2 is shown for the years
1995 and 1996. For the whole North Sea, the annual CO2 sink
amounts to 503 Gmol C yr�1or 0.98 mol C m�2 yr�1 for both
years. According to our model results, the greater part of the
North Sea (about 70% of its area) is a net sink for atmospheric CO2.
Along the British coast and north of the Frisian Islands we find
weak source areas. Strong outgassing occurs in the plumes of the
Rhine and Elbe rivers. This holds for both years; however, in 1996
the source off the British coast area is somewhat extended, but
most of all, the sink in the central and southern North Sea is
weakened, compared to 1995.

Thomas et al. (2004) estimated from their observations for
2001/2002 an annual net CO2 uptake of about 1.4 mol C m�2

yr�1. Thus, from observations as well as from our model study the
North Sea can be characterized as a sink for atmospheric CO2. The
carbon taken up can only be exported to the neighboring North
Atlantic or accumulate in organic or inorganic form within the
North Sea. We address these questions in the section on the
carbon budget.

The air–sea flux of CO2 has a pronounced seasonal cycle. Fig. 4
shows the simulated monthly CO2 fluxes for the months February,
May, August, and November 1995. As a persistent pattern, during
all months small regions with intense outgassing such as the
inner German Bight (Elbe outlet) and north of the river Rhine
outlet is to be seen. This was not observed during the CANOBA
cruises in 2001/2002 (Thomas et al., 2004). Possible explanations
for this deviation are a) that the large DIC and TOC loads of both
rivers were not sufficiently diluted in the model and b) that the
CANOBA sampling grid did not capture those river plumes close to
the coast.

In late winter and in spring, we found nearly the whole North
Sea to be a sink of CO2, whereas in summer and autumn mainly
the southern and western parts of the North Sea released CO2 to
Table 1
Annual biogeochemical fluxes (in Gmol C yr�1) for the whole North Sea, the southern N

1996 (NAOIo0), as obtained with the ecosystem model ECOHAM. NPP—net prima

HR—heterotrophic respiration, NEP—net ecosystem production, ASF—air–sea flux of

air–sea CO2 flux.

Flux North Sea SNS

1995 1996 1996–1995 1995

NPP 9019 8870 �149 3412

NPPred 7624 7645 �21 3032

NPPexc 1395 1225 �170 380

HR 9067 9233 +206 3317

NEP �48 �363 �315 +95

ASF +503 +503 0 �159

ASFbio +594 +334 �260 +136

ASFphy �91 +169 +260 �295
the atmosphere. Compared with the observation-derived air–sea
fluxes of CO2 (Fig. 5 in Thomas et al. (2005b), note that the fluxes
given there have to be multiplied by a factor of 10), we find
overall good correspondence as well in the order of magnitude as
in the regional patterns. The main difference (besides the
aforementioned river plumes) is that in February 2002 a large
region in the central North Sea was a source of CO2—in obvious
contrast to our model results. The reason for this might be the
difference in SST between 1995 and 2002 (1–2 1C): the warmer
surface water in 2002 favored the outgassing of CO2.

In order to separate biological from physical/chemical controls
on the air–sea CO2 flux, an additional simulation, the ‘‘no-biology
run’’, was performed, where only hydrodynamic and chemical
processes (carbonate chemistry) are simulated. Assuming as a
first approximation a linear superposition of the physical/
chemical and the biological effects, we calculated the biologically
mediated air–sea flux (ASFbio) by subtracting the purely physi-
cally/chemically controlled air–sea flux of the ‘‘no-biology run’’
(ASFphys) from that of the standard run. The resulting ASFbio in
1996 is lower than the ASFbio in 1995 by 260 Gmol C yr�1

(Table 1), corresponding to a decline of the CO2 flux from 1.2 to
0.65 mol C m�2 yr�1. This decrease occurs in both parts of the
North Sea by almost the same amount, in the southern North Sea
more or less due to a corresponding difference in the net
ecosystem production (as discussed hereafter).

The annual cycle of the air–sea flux of CO2 is shown in Fig. 5 for
both years, separately for the whole North Sea (Fig. 5a), the northern
(NNS, Fig. 5b), and the southern North Sea (SNS, Fig. 5c), respectively.
From these results some general patterns can be deduced:
1)
orth

ry p

CO2

199

312

280

32

312

+

�5

+2

�8
The annual cycle is determined by a strong CO2 uptake by the
NNS plus a weak uptake by the SNS during the first half of the
year; in the second half of the year the uptake by the NNS is
nearly compensated by CO2 outgassing in the SNS.
2)
 In both sub-regions the physics dominate the uptake during
the first 3–4 months of the year, afterwards we note physically
driven outgassing due to the annual cycle of the SST.
3)
 For the North Sea as a whole, the biology drives net uptake of
CO2, in particular during May, June, and July. In autumn,
biologically driven CO2 uptake is compensated by physically
driven outgassing.
4)
 Without biological processes both the SNS and NNS would be a
net source of CO2.

3.2.2. Net primary production, net ecosystem production,

heterotrophic respiration

The most important fluxes characterizing the functioning of the
ecosystem are the NPP (divided into the Redfield part, NPPred, and
Sea (SNS) and the northern North Sea (NNS) for the years 1995 (NAOI40) and

roduction, NPPred—Redfield primary production, NPPexc—excess production,

, ASFbio—biologically mediated air–sea CO2 flux, ASFphy—physically mediated

NNS

6 1996–1995 1995 1996 1996–1995

9 �283 5606 5741 +135

3 �229 4591 4841 +250

6 �54 1015 900 �115

5 �192 5750 6108 +358

4 �91 �144 �368 �224

9 +100 +662 +562 �100

3 �113 +458 +311 �147

2 +213 +204 +251 +47
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the ‘overflow’ or ‘excess’ production NPPexc) and NEP defined as

NEP¼GPP-AR-HR¼NPP-HR, ð3Þ

where GPP is gross primary production, AR is autotrophic respiration
and HR is heterotrophic respiration. Contributors to HR – in our
model – are bacteria and zooplankton in the pelagic and the benthic
remineralization. All these fluxes are given in Table 1 for 1995 and
1996.

For 1995, we obtain an NPP of 9019 Gmol C yr�1, correspond-
ing to 211 g C m�2 yr�1, 15% of this amount being NPPexc. The
mean annual C:N ratio of the total NPP is 7.8. For 1996, the NPP
amounts to 8870 Gmol C yr�1 (208 g C m�2 yr�1) with a mean
C:N ratio of 7.2. As can be seen from Table 1, this decrease of NPP
Fig. 5. Monthly air–sea fluxes of CO2 for (a) the whole North Sea, (b) the northern North

show the result of the coupled physical–biological model run, the lower ones show the

(light bars). Positive sign: influx, negative sign: efflux.
of less than 2% compared to 1995 is due to a decrease of the
overflow production, mainly in the NNS. At the same time, HR
increased with the consequence of a drastic decrease of NEP from
�48 to �363 Gmol C yr�1. That means, from 1995 to 1996 the
trophic state of the North Sea became more net-heterotrophic.
Yet, the annual net CO2 uptake from the atmosphere remained
nearly constant during both years at 503 Gmol C yr�1.

A negative NEP indicates that the biological CO2 release (due to
AR and HR) is larger than the CO2 uptake by GPP. At first sight, this
should translate into outgassing of CO2 to the atmosphere.
However, this can only happen if the CO2 is released into the
surface layer and thus is able to escape into the atmosphere. In
case of a strong and long-lasting stratification this might not
Sea, and (c) the southern North Sea for the years 1995 and 1996. The upper panels

result of the ‘no-biology’ run (dark bars) and the deduced biologically driven fluxes



Fig. 5. (Continued)
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happen. This means the air–sea CO2 flux is not only determined by
the biological processes, but as well by the prevailing hydro-
dynamic conditions, mainly the SST and the mixing regime. This
explains why for the northern North Sea the difference in ASFbio

between the two years was only 147 Gmol C yr�1, even though
the NEP was more negative by 224 Gmol C yr�1 in 1995 than in
1996. In the northern North Sea, a significant part of the HR took
place without contact with surface waters (Bozec et al., 2006).

The processes leading to the decrease in NEP from 1995 to
1996 differ between NNS and SNS. On the one hand, there is a
decline of the total NPP in 1996, due to a strong decrease of NPP in
the SNS, which is only partially compensated by an increase of
NPP in the NNS. On the other hand, there is an increase of the HR,
predominantly in the NNS which is only partially compensated by
a decrease of HR in the SNS. The regional increase in HR can be
explained by the corresponding increase in NPPred. However,
while in the NNS, NPPred increased by 250 Gmol C yr�1, HR
increased by 358 Gmol C yr�1 (Table 1). The question is whether
this difference can be attributed to different residence times of
subsurface waters in the NNS. These residence times are related to
the strength of water (and thus carbon) export via the Norwegian
Trench. While in 1995 with a high NAOI and a more pronounced
anti-clockwise circulation (PK1—Fig. 3) the export of carbon via
the deep Norwegian Trench was 110,654 Gmol C yr�1, it was only
104,835 Gmol C yr�1 in 1996. The water export was 1.60 Sv
(106 m3 s�1) in 1995 and 1.52 Sv in 1996 (Table 2). This could
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Table 2
Comparison of northern North Sea features 1995 vs. 1996: net water outflow via

the Norwegian Trench (1 Sv¼106 m3 s�1), net export of carbon, days with

stratification (see text), heterotrophic respiration (HR), HR in 1996 when the

water transport from 1995 is used, HR in 1996 when the water transports and the

vertical eddy diffusion coefficients from 1995 are used.

1995 1996

Norwegian Trench water outflow (Sv) 1.60 1.52

Norwegian Trench carbon export (Gmol C yr�1) 110,654 104,835

Days with stratification (DT40.5 1C) 83 64

HR (Gmol C yr�1) 5750 6108

HR in 1996 (water transports of 1995)
(Gmol C yr�1)

6068

HR in 1996 (water transports+vertical mixing of
1995) (Gmol C yr�1)

5888
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have led to an increased decomposition of organic material in the
deeper parts of the North Sea in 1996 compared to 1995. We
tested this hypothesis by repeating the simulation for 1996 with
the advective forcing fields of the year 1995. The result was that
the HR decreased by only 40 Gmol C yr�1, which did not
explain the difference in HR between the two years in the
standard run.

The number of days with a temperature difference of more
than 0.5 1C between 0 and 30 m for a northern station (58.91N,
0.61E) was significantly higher in 1995 than in 1996 (Table 2).
Therefore we hypothesized in a next step that the strong increase
of HR in 1996 was due to increased vertical mixing (Fig. 6). A
simulation for the year 1996 with vertical diffusion coefficients of
1995 yielded a HR decline by 220 Gmol C yr�1. This allows the
conclusion that the weaker stratification (rather than advection)



Fig. 6. Vertical mixing coefficients (in m2 s�1) at 30 m depth in the northern North

Sea at 58.91N, 0.61S for the years 1995 and 1996.
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is responsible for the increase of HR from 1995 to 1996 in the
standard run.

The annual North Sea-wide Redfield production NPPred is
similar in both years, with a substantial decline in the SNS in
1996, compensated by a nearly equal increase in the NNS. The
decline of NPP (NPPred as well as NPPexc) in the SNS is mainly due
to reduced nitrogen inputs by the rivers (PK1), partly also due to
the lower temperatures during the first months of the year 1996.
On the other hand, the increase of NPPred in the NNS is a
consequence of the weaker stratification, and thus a larger supply
of nutrients by mixing from deeper layers during spring 1996
(Fig. 6). Correspondingly, the nitrogen depletion phase after the
spring bloom which stimulates NPPexc is shortened. In order to
quantify the drivers of these opposing effects, we compared the
surplus of riverine nitrogen input into the SNS in 1995 vs. 1996
(126 mmol N m�2 yr�1) with the difference of DIN (1996–1995)
imported into the upper layer via mixing at a relatively deep
station (130 m; 58.91N, 0.61S) in the NNS (247 mmol N m�2 yr�1).
Taking into account that the deep northern station is not
representative for the whole NNS, we conclude that the
differences of DIN input are in the same order of magnitude.

The seasonal (and interannual) variability of the different
production fluxes can be seen in Fig. 7. Here, the depth-integrated
monthly values of NPPred (split into ‘new’, i.e. NO3-fuelled
production NPPnew, and ‘regenerated’, i.e. NH4-fuelled primary
production NPPreg) and of NPPexc are shown for the whole North
Sea (Fig. 7a) as well as for both sub-regions (Fig. 7b and c) for the
year 1995. For comparison, Fig. 7d shows the corresponding
results for the whole North Sea and for the year 1996. While for
the NNS (Fig. 7b) the maximum of the NPPred occurs during
spring, in the SNS (Fig. 7c) this maximum is reached during the
summer months. As can be seen, according to our model the
NPPexc seems to be relatively more important in the NNS due to
the longer periods of nutrient depletion phases. This, however, is
in contrast to the observation, that in the Southern Bight
Phaeocystis spp. dominating the bloom produce carbon-rich
mucus which is partly and slowly degradable (Schiettecatte
et al., 2006; Alderkamp et al., 2007). Because Phaeocystis with
its complex life cycle is not included in our model we might miss
an important part of NPPexc in that region. In May and June 1996,
the NPPred of the whole North Sea is somewhat higher than in
1995, with the consequence of less NPPexc during the same period.
The highest values of Nnew are always reached in April, whereas
Nreg has its maximum in June/July. The mean f-ratios for the
whole North Sea are 0.30 (1995) and 0.28 (1996), respectively.
3.2.3. Carbon budgets

The carbon budgets were calculated for the North Sea as a
whole and for the two different sub-regions (SNS and NNS). The
fluxes were separated into DIC and total organic carbon (TOC)
fluxes. Fig. 8 shows these budgets for 1995 with emphasis on the
trans-boundary fluxes, i.e. the fluxes across the boundaries to the
North Atlantic and the Baltic, the fluxes across the interface with
the atmosphere and the inflow via rivers. The internal
biogeochemical fluxes given in Table 1 are here summarized as
net ecosystem production: NEP40 indicates a source of TOC and
a sink of DIC and vice versa. DDIC and DTOC denote the internal
accumulation/loss over the year.

For the whole North Sea (Fig. 8a) we obtained an NEP of
�48 Gmol C yr�1 or �0.1 mol C m�2 yr�1, corresponding to a
net-heterotrophic system. According to our results, the North Sea
is divided into a strong net-heterotrophic NNS (Fig. 8b) and a net-
autotrophic SNS (Fig. 8c). Both areas exchange carbon across the
section at 55.41N (denoted as NI-55.4): the net transport of both
the inorganic and the organic fraction is directed from south to
north. The DIC flux is mainly fed by the Atlantic inflow through
the English Channel (NI-south); in case of TOC only about half of
the south-to-north flux enters via the Channel, another 29% are
supplied by rivers. The total system (Fig. 8a) accumulates organic
carbon partly due to the net import across the boundaries, while
inorganic carbon is lost, mainly across the northern boundaries
NW, NT, and SK (see Fig. 1) summarized as NI-north in Fig. 8b.
4. Discussion

4.1. DIC and TALK

The concentrations of DIC and their regional distribution
depend critically on the boundary conditions prescribed, in
particular at the open boundary to the North Atlantic and to the
Baltic. Sensitivity studies showed that using DIC (and TALK)
boundary conditions from climatological databases (CDIAC)
induced too high levels of the simulated DIC concentrations.
Thomas et al. (2008) demonstrated that the use of climatological
DIC concentrations cannot be justified given the substantial
interannual variability of DIC concentrations in the eastern
temperate North Atlantic.

Assuming that TALK is subject to less interannual variations
than, e.g. DIC, and to only weak long-term trends, we decided to
use the alkalinity data obtained during the CANOBA project in
2001/2002 for our simulation period 1995/1996. The effect of
near-surface TALK increase due to nitrate assimilation and
alkalinity decrease by degradation in lower layers may play a
role for the vertical distribution of TALK in the stratified NNS. In
principle, this effect is also included in the prescribed TALK fields,
but its intensity and the consequences for the near-surface pCO2

may change from year to year. To test this we applied the model
in a 1D version at a northern position with (a) prescribed TALK
and (b) prognostic TALK. The resulting annual air–sea fluxes of
CO2 differed by less than 4%.
4.2. Air–sea CO2 fluxes and carbon budgets

According to our simulation, in 1996, the year with the
extremely negative winter-time NAOI, the net-autotrophic state
of the SNS is weaker than in 1995, whereas the net-heterotrophic
state of the NNS is strengthened (Table 1), which results in a
strengthening of the net-heterotrophic state of the North Sea as a
whole in 1996 compared to 1995. As a consequence, the
biologically driven air–sea fluxes of CO2 in both regions are larger
in 1995 than in 1996. This is illustrated in Fig. 5, where the
monthly air–sea fluxes of CO2 are given for both years. The
comparison of the total CO2 flux (upper panels) with the CO2



Fig. 7. Annual cycles of NPP, NPPred, NPPnew, NPPreg, and NPPexc for (a) the whole North Sea for 1995, (b) the northern North Sea (north of 55.41N) for 1995, (c) the southern

North Sea (south of 55.41N) for 1995, and (d) for the whole North Sea for 1996.
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fluxes resolved according to the different drivers (lower panels)
shows e.g., that the physics (i.e. the lower SST) rather than
biological activity is responsible for the high CO2 uptake in
particular during May and June 1996. While the physically driven
CO2 flux changes direction from release to uptake, the biologically
driven flux during these two months decreased in 1996 compared
to 1995. This is seemingly contradictory to the higher NPP in May
and June 1996, but can be explained by a large upward transport
of DIC due to the stronger vertical mixing in these months in 1996
(Fig. 6).

For the whole North Sea, Thomas et al. (2005b) calculated an
NEP of 4.0 mol C m�2 yr�1 for the upper 30 m, while Bozec et al.
(2006) gave an improved estimate of 4.3 mol C m�2 yr�1 by taking
into account advection and turbulent mixing. For this depth-interval
we obtained from our simulations an NEP of 6.2 mol C m�2 yr�1 for
1995, i.e. about 50% higher. When extending the calculation to
the whole water column, Bozec et al. (2006) got an NEP value of
�0.1 mol C m�2 yr�1, exactly the same value we got from our
simulation for 1995.

The characterization of the SNS as weak net-autotrophic region
coincides with other studies for the whole SNS (Bozec et al., 2006),
or certain parts of it, as for the Southern Bight (Schiettecatte et al.,
2007) and the Belgian Coastal Zone (Gypens et al., 2004). It differs
from the study by Prowe et al. (2009) using the ECOHAM model



Fig. 8. Annual carbon budget (in Gmol C yr�1) for (a) the whole North Sea, (b) the

northern North Sea (NNS), and (c) the southern North Sea (SNS) for the year 1995.

DIC—dissolved inorganic carbon, TOC—total organic carbon; At—exchange with

the atmosphere, Ri—riverine input, NI—net import across outer boundaries;

NEP—net ecosystem production. DDIN and DTON are the changes of content under

the assumption of conservation of volume. NI—north-transport across sections

NW, NT, and SK (see Fig. 1); NI-55.4—transport across the section at 55.41N; and

NI—south-transport across section EC.

Fig. 9. Mean annual cycle of near-surface DIC concentrations (in mmol C kg�1) for

off-shore areas in (a) the northern North Sea, (b) the southern North Sea for 3

different values of the parameter fexc: no excess production (fexc¼0.0—dashed

line), maximum excess production (fexc¼1.0—dotted line), and intermediate

excess production (fexc¼0.5—full line). The stars indicate observations in the

corresponding area and time of the year (Thomas et al., 2004).
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with fexc¼0.0 for the SNS. All mentioned papers find that the NEP
as well as the air–sea flux of CO2 in the SNS varies around zero.
For the Scheldt estuarine plume Borges et al. (2008) found large
interannual variations of the NEP accompanied by CO2 outgassing
of varying strength.
4.3. Strength of excess production

Fig. 9 shows the annual cycle in 1995 of simulated surface DIC
concentrations for different choices of the strength of the excess
production (fexc¼0.0, 0.5, 1.0). Fig. 9a and b illustrates the
behavior of off-shore areas in the northern and southern North
Sea, respectively. The stars indicate observations in the
corresponding area and time of the year, but for different years
(Thomas et al., 2004). The lines give the daily averages over the
(northern or southern) areas. In case of fexc¼1.0 (dotted line) we
found a strong DIC drawdown, especially in summer. For fexc¼0.0
(dashed line) we obtained only a moderate summer DIC decrease.
For fexc¼0.5 (full line) the summer concentrations fall between
the two others. In winter (until day 120), the curves for fexc¼0.0
fall below those for the higher fexc. This is due to enhanced winter
remineralization rates in case of (moderate or full) excess
production. Even though the scatter of the observations is quite
large, the spring and summer concentrations in the NNS support
the choice of fexc¼0.5 (Fig. 9a). The annual cycle of simulated DIC
in the SNS (Fig. 9b) is less pronounced, even for the full excess
production (fexc¼1.0). It cannot be determined whether the
moderate (fexc¼0.5) or the strong (fexc¼1.0) excess production
results in DIC concentrations closer to the observations. Our
choice of fexc¼0.5 in the standard run for the whole model area is
in contrast to an earlier modeling study (Prowe et al., 2009) where
the DIC concentrations observed during 2001/2002 could best be
reproduced by the simulations when different values of the
parameter fexc were chosen for the SNS and the NNS. Primarily,
our simpler and more straightforward approach was only
successful thanks to the new boundary concentrations for DIC,
which were lower than the climatological data used by Prowe
et al. (2009). Besides, we were treating different years, when
observations show considerable interannual variability in pCO2

values (e.g. Omar et al., 2010). Further work both on the
observational and the modeling side is necessary to clarify the
strength of excess production as well as the fate of the fixed
organic carbon (Schartau et al., 2007).

As mentioned above, simulated spring DIC values exceed those
of the observations in the SNS. One explanation for this deviation
is the difference between the simulated SST for 1995 and
corresponding observed values in 2002: While the observed SST
in the southern (off-shore) region was about 12 1C during the
second half of May, the simulated SST (in 1995) was below 9 1C.
As a higher SST raises the pCO2 of surface waters and thus the
tendency for outgassing, lower DIC concentrations could be
expected for 2002. Additionally, carbon fixation by biological
production is amplified by higher temperature. But, likewise, an
underestimation of the phytoplankton bloom, e.g. Phaeocystis, by
the model is possible.
5. Conclusions

According to our simulations, in the mid-nineties the North
Sea took up atmospheric CO2 and exported DIC into the North
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Atlantic. We could confirm the finding obtained by Thomas et al.
(2005a) from extensive observations made in 2001/2002, accord-
ing to which the North Sea acts as a carbon shelf pump. In the
NNS, the simulated rate of CO2 uptake (�2 mol C m�2 yr�1) is
comparable with the estimates from observations in the North
Atlantic at corresponding latitudes (Takahashi et al., 2002). One
should realize, however, that the North Sea is additionally loaded
by riverine carbon. Without the biologically mediated uptake in
the surface waters the North Sea would become a (weak) source
for atmospheric CO2.

The sensitivity studies concerning the impact of NAO-driven
variations of advection vs. vertical diffusion on the North Sea
system indicate that the local meteorological dynamics (partly
determined by the NAO) have a stronger impact than the
variations in water exchange between the North Atlantic and
the North Sea, at least for interannual variations. We conclude this
from our sensitivity experiments (Table 2), where we successively
exchanged hydrodynamic features from one year to another:
Firstly we exchanged the advection and secondly the vertical eddy
diffusion coefficients. The latter change had a much larger impact
on the biogeochemical fluxes than the first one.

From our results future perspectives for the impact of climate
change onto the carbon pump mechanism can be delineated:
stronger stratification may induce a stronger CO2 pump mechan-
ism. On the other hand, a decrease of pH due to continuous CO2

uptake from the atmosphere will weaken the CO2 pump
mechanism (Thomas et al., 2007).

To investigate the latter effect, repeated measurements of DIC,
pCO2, etc. are planned. These investigations will be accompanied
by improved model simulations, e.g. with explicit inclusion of
calcifying phytoplankton and of Phaeocystis, prognostic calcula-
tion of TALK with realistic boundary values at the Wadden Sea
coast, reasonable TALK river loads and enlargement of the model
area, to better represent the transports across the shelf edge.
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