

An overview

Git: Definition
noun British informal
noun: git; plural noun: gits

 an unpleasant or contemptible person. Google

Git: Definition
noun British informal
noun: git; plural noun: gits

 an unpleasant or contemptible person. Google

Git: Definition
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses
SCM tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple workflows.

Git: Definition
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses
SCM tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple workflows.

Git: Definition
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses
SCM tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple workflows.

Git: Definition
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses
SCM tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple workflows.

Git: Definition
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses
SCM tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple workflows.

Git: Definition
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses
SCM tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple workflows.

Git: Definition
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses
SCM tools like Subversion, CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple workflows.

Show-off git!

Git: What's it good for?
● Keeping track of

evolving text based
documents.

Git: What's it good for?
● Keeping track of

evolving text based
documents.

● Working on many
features of one
project at the same
time.

Drupal / Introduction to Git

Git: What's it good for?
● Keeping track of

evolving text based
documents.

● Working on many
features of one
project at the same
time.

● Working in multiple
locations or with
multiple people.

Git: What's it good for?
● Keeping track of

evolving text based
documents.

● Working on many
features of one
project at the same
time.

● Working in multiple
locations or with
multiple people.

Git: What's it good for?
● Keeping track of

evolving text based
documents.

● Working on many
features of one
project at the same
time.

● Working in multiple
locations or with
multiple people.

Git: How to get started?
1)Pick a project contained in one directory

(or create a new directory with the oldest files in it).

1

Git: How to get started?
1)Pick a project contained in one directory

(or create a new directory with the oldest files in it).

2)Commit the oldest files without any
date/time/version indicators to initialize the
history in git.

1
2

Git: How to get started?
1)Pick a project contained in one directory

(or create a new directory with the oldest files in it).

2)Commit the oldest files without any date/time/version
indicators to initialize the history in git.

3)Overwrite the files with the more recent ones,
in chronological order, and commit each version.

1

3 {
2

Git: How to get started?
1)Pick a project contained in one directory

(or create a new directory with the oldest files in it).

2)Commit the oldest files without any date/time/version
indicators to initialize the history in git.

3)Overwrite the files with the more recent ones,
in chronological order, and commit each version.

4)Start new branches to work on new features.

5)Merge back branches when the features are
completed, to update the main/master branch.

1

3 {
2

4
4

2

5

5

Git: A specific example
1)Start working on a new paper/thesis/thesis proposal

2)Commit the files to be tracked:
- tex file of the proper document
- scripts specific to figures for the document

3)Commit new “milestones” as progress is made
towards the first full draft.

4)Start new branches to work with co-authors
revisions.

5)Merge comments back into the master branch to get
the new version.

1*) If this is your first ever git repository, you
 should also configure git parameters:

1

3 {
2

4
4

2

5

git config ­­global PropertyToChange ValueToSet

ex.:
git config ­­global user.name “Jean­Pierre Auclair”
git config ­­global user.email jn402157@dal.ca

Git: The actual commands
1)Start working on a new paper/thesis/thesis proposal

2)Commit the files to be tracked:
- tex file of the proper document
- scripts specific to figures for the document

3)Commit new “milestones” as progress is made
towards the first full draft.

4)Start new branches to work with co-authors
revisions.

5)Merge comments back into the master branch to get
the new version.

1

3 {
2

4
4

2

5

1) git init
2) git add FirstFileToBeTracked ScndFileToBeTracked
2) git commit ­m “First commit of ThisProject”
3) git add FileThatHasChanged NewFileToTrack
3) git commit ­m “Changed XYZ”
4) git branch NewBranch
4) git checkout NewBranch
5) git checkout master
5) git merge NewBranch

Git: The actual commands +
1)Looking where you are:
git status

2)Looking back in history:
git log

3)Comparing commits:
git diff BaseCommit NewCommit

4)Fixing a commit:
git commit ­­amend

5)Tagging a commit:
git tag TagToBeApplied
git tag ­a TagToBeApplied ­m TagMessage

Git: The actual commands ++
1)Looking where you are:
git status

2)Looking back in history:
git log

3)Going back in time:
git checkout OldCommit

4)Starting an alternate history:
git checkout ­b NewBranchName

5)Coming back to the present:
git checkout master

6)Deleting history:
git reset ­­hard CommitToRevertTo

Git: Extra resources:
1)Try-git: https://try.github.io/levels/1/challenges/1

2)Online git cheatsheets

3)Asking Google

4)My (VERY WIP) wiki:
http://www.phys.ocean.dal.ca/~jpaucl/index.php/Main/Git

5)Your git using peers!

https://try.github.io/levels/1/challenges/1
http://www.phys.ocean.dal.ca/~jpaucl/index.php/Main/Git

Git: Extra resources:
1)Try-git: https://try.github.io/levels/1/challenges/1

2)Online git cheatsheets

3)Asking Google

4)My (VERY WIP) wiki:
http://www.phys.ocean.dal.ca/~jpaucl/index.php/Main/Git

5)Your git using peers

6)Me right now!

Questions?

?!?

https://try.github.io/levels/1/challenges/1
http://www.phys.ocean.dal.ca/~jpaucl/index.php/Main/Git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

