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Abstract: I examine two numerical solutions to the one-dimensional tracer advection equation,
∂tC + u∂xC = 0, whereC is a scalar concentration,u is a velocity,t is time, andx is the spatial
coordinate. The algorithms examined are fully explicit. One uses a centred advection scheme
while the other uses an upstream advection scheme. Results of the two schemes, and effects of
boundary conditions on long-term evolution are discussed briefly. It is concluded that while the
upstream scheme the is better of these two, one with less numerical diffusion would be preferable.

1 Introduction

The choice of algorithm used to examine a
given differential equation numerically affects
the quality and utility of the solution. Here, I
have examined two possible schemes that can
be used to solve the one-dimensional tracer ad-
vection equation,
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where C is a some scalar,u is a velocity, t
is time, andx is the spatial coordinate. The
schemes are (i) centred time with centred ad-
vection and (ii) forward in time with upstream
advection, and the discretizations for each are

(i) centred advection scheme:
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(ii) upstream advection scheme:
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where the superscripts and subscripts show dis-
cretization in time and space, respectively.

A brief overview of the domain is given
in the following section. Output from of the two
advection schemes are shown and discussed in
Section 3. Interplay the centred scheme with
boundary conditions is examined in Section 4.
A brief conclusion is given in Section 5.

2 Methods

The model domain is described in Table 1. The
model was run for 800 timesteps (nmax = 800,
tmax = 800 s). The initial scalar concentration
is described by the square function,

C1
j =


0 j < 2
2 2 ≤ j < 20
0 j ≥ 20

(4)

Given the domain size (L = 1000 m) and the ve-
locity (u = 0.2 m s−1), the square function will
still be well within the domain at the end of the
iteration. Hence, the choice of boundary con-
ditions should not affect the long term evolution
for this problem so long as they are stable. I have
chosen the boundary condition∂C/∂x = 0, al-
though clamped boundary condtions could also
be considered as valid. The boundary conditions
(and choice of scheme) can affect the solution
when the concentration spike is advected out of
the model domain through an open boundary.
This scenario is examined in the Section 4.

Variable Symbol Value
time step ∆t 1 s
space step ∆x 1 m
velocity u 0.2 m s−1

domain length L 1000 m
duration tmax 800 s

Table 1: Parameters defining the model domain.
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Figure 1: Results of two numerical schemes after (a) 100 s and (b) 800 s.

3 Results

Results from the two advection schemes are
shown in Figure 1.

(i) centred advection scheme:
The centred advection scheme keeps the

overall shape of the analytic solution as it
evolves in time. It reports negative tracer con-
centrations, which are spurious. There is also
a large amount of high-wavenumber noise up-
stream of the concentration “spike”. Neither of
these features is desireable. Over the full 800
seconds the total concentration, i.e.

∑
j Cj, in-

creases by 0.03%.

(ii) upstream advection scheme:
In contrast to the centred advection

scheme, the upstream scheme does not have
the same variability upstream of the concentra-
tion spike, nor does it produce spurious negative
concentrations. It does, however, have a high
amount of numerical diffusion. It would be bet-
ter to utilize an advection scheme that limited
this “leakage”. Conservation ofC is better for
this scheme than the centred scheme:

∑
j Cj de-

creases only by O(10−15) over the 800 seconds
of the numerical trial (ε = 2× 10−16).

4 Boundary Considerations

A second trial, withL2 = 100 m was also exam-
ined to consider the effects of boundaries on the
advection schemes (results are shown in Figure

2). When the tracer spike encounters an open
boundary, the centred advection scheme shows
a very undesirable result: a spike of “negative
concentration” is reflected back into the domain.
Rather than having the spike advect out of the
domain, as is the case for the upstream advection
scheme, a signal gets trapped in the domain. If
the model is allowed to continue running (by in-
creasingtmax), the solution eventually goes un-
stable and “blows up”.
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Figure 2: Same as Figure 1b but with a smaller
domain,L2 = 100 m.

5 Conclusion

It is evident that the upstream scheme is the bet-
ter of the two schemes discussed. It does not
produce spurious negative concentrations, and
it behaves well with the open boundaries. This
scheme, however, has problems with numerical
diffusion. Other schemes, such as one of higher
order with a flux limiter, likely provide a better
alternative.
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