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Abstract:

1 Introduction

To begin, let us consider the function

f(t) =
1√

1− t2
. (1)

In introductory calculus courses, one learns early on that

F (x) =
∫ x

0

f(t)dt = sin−1(x). (2)

The functionF (x) has real values for−1 ≤ x ≤ 1, and
is periodic with a periodT = 2π. The principal values of
F (x) are bound by−π/2 ≤ F (x) ≤ π/2. If we defineK
such that

K =
∫ 1

0

f(t)dt, (3)

thenK = π/2, and the period ofF (x) = 4K. Because
of this relationship,K is often called thequarter period.
The function,F (x), known as a cyclometric function, is
simply the inverse of the elementary function,sinφ, i.e.
F (sinφ) = φ.

We will now move onto a more complex function
that will form the basis for Jacobian Elliptical Functions,
or JEFs. Consider now the function

G(φ, k) = u =
∫ φ

0

dθ√
1− k2 sin2 θ

. (4)

If we now make the substitutionst = sin θ and

x = sinφ, (5)

then we may rewrite this function as

u =
∫ x

0

g(k, t)dt =
∫ x

0

dt√
(1− t2)(1− k2t2)

. (6)

For k = 0, g(k, t) reduces tof(t) andu = sin−1 x, or
x = sinu. Fork = 1, u = tanh−1 x, or x = tanhu.

2 Defining Jacobian Elliptical Func-
tions

We can now define our first JEF,sn, as the inversion
u(x, k) with respect tox, namely

sn(u, k) = x = sinφ. (7)

Other notations may write function assn(u|k) or sn(u),
where thek is assumed but not included.

In an analogy to the trigonometric relation-
ship betweensin(x) and cos(x), there exists a function
cn(u, k),

cn(u, k) =
√

1− sn2(u, k) =
√

1− x2 = cos φ. (8)

The ratiosn(u, k)/ cn(u, k) was once calledtn(u, k), but
for reasons explained below is now referred to assc(u, k),

sc(u, k) =
sn(u, k)
cn(u, k)

=
x√

1− x2
= tan φ. (9)

A final JEF that complimentssn andcn, is

dn(u, k) =
√

1− k2x2 = (1− k2 sin2 φ)1/2 = ∆(φ).
(10)

In the limit thatk → 1, dn ∼ cn. In the limit that
k → 0, these functions tend towards their trigonometric
counterparts, except fordn which tends towards unity. A
graphical display of these functions fork = 1/2 is shown
in Figure 1.
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Figure 1: Jacobian elliptical functionscn, sn, and dn
for k = 1/2. Note that the period fordn(u, k) is only
T = 2K(k), as opposed toT = 4K(k) for sn andcn. For
k > 1/2, cn curves have an inflection point atu/K = 1
andu/K = 3.
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3 The Quarter Periods

Further understanding of the JEFs may be gained by re-
turning to the quarter period,K. We expand the function
given above in (3) so it carries a dependence onk,

K(k) =
∫ 1

0

f(k, t)dt =
∫ π/2

0

dθ√
1− k2 sin2 θ

, (11)

noting that4K(0) = 2π and4K(1) = ∞ suggests that
the period ofsn(u, k) is T = 4K(k). The quantityk is
calledthe parameterby Abramowitz and Stegun (1965),
and anonlinearity parameterby Apel (2003). This lat-
ter definition arises from the concept that ask → 1,
cn2(u, k) ∼ sech2(u), i.e. the solitary wave solution
of the KdV equation (Korteweg and de Vries 1895). For
now, we will use theparameter. The functionK is shown
in Figure 2.
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Figure 2: The functionK(k). Note thatK ∼ ∞ as
k → 1.

The parameter is joined by acomplimentary pa-
rameterk1 such that

k + k1 = 1 (12)

and, by extension,

K ′(k) = K(k1). (13)

If one ofk, k1, K, K ′, or K ′/K are known, then the rest
may be determined (Abramowitz and Stegun 1965).

A graphical relationship between the quarter pe-
riod and the JEFs can be constructed using an Argand di-
agram (Figure 3). If we takep andq as any two of the
lettersc, d, n, ands, then the functionpq(u, k) must have
the following three properties (Abramowitz and Stegun
1965):

1. pq(u, k) has a simple zero atp and a pole atq.

2. the step fromp to q is a half-period ofpq(u). Also,
pq(u, k) is periodic in the other two directions (i.e.
from p to one of the other two corners of the rect-
angle), with a period such that the distance from p
to the other corners is a quarter period.

3. The coefficient of the leading term in the expansion
of pq(u, j) in ascending powers ofu aboutu = 0
is unity. If the expansion is atp then the leading
power isu1, if it is at q then the leading power is
u−1, and if it is at one of the other two corners,
then the leading power isu0.
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Figure 3: Argand diagram showing the relationship be-
tween the quarter period and JEFs.

A first glance at statements 1 and 2 may not seem
to match with Figure 1. However, in the case here,u and
K are real, and as such Figure 1 is a projection of these
complex functions onto the real axis.

4 Relationships

All relationships transcribed from Abramowitz and Ste-
gun (1965).

4.1 Ratios

If p, q, andr are any three letters ofc, d, s, andn, then

pq(u, k) =
pr(u, k)
qr(u, k)

(14)

4.2 Squares

−dn2(u, k) + k1 = −k cn2(u, k) = k sn2(u, k)− k
(15)

−k1 nd2(u, k) + k1 = −kk1 sd2(u, k) = k cd2(u, k)− k
(16)

k1 sc2(u, k) + k1 = k1 nc2(u, k) = dc2(u, k)− k (17)

cs2(u, k) + k1 = ds2(u, k) = ns2(u, k)− k (18)

4.3 Addition Theorems

sn(u + v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1− k sn2(u) sn2(v)
(19)

cn(u + v) =
cn(u) cn(v)− sn(u) dn(u) sn(v) cn(v)

1− k sn2(u) sn2(v)
(20)

dn(u + v) =
dn(u) dn(v)− k sn(u) cn(u) sn(v) sn(v)

1− k sn2(u) sn2(v)
(21)
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4.4 Double Arguments

sn(2u) =
2 sn(u) cn(u) dn(u)

1− k sn4(u)

=
2 sn(u) cn(u) dn(u)

sn2(u) + sn2(u) dn2(u)

(22)

cn(2u) =
cn2(u)− sn2(u) dn2(u)

1− k sn4(u)

=
cn2(u)− sn2(u) dn2(u)
sn2(u) + sn2(u) dn2(u)

(23)

dn(2u) =
dn2(u)− k sn2(u) cn2(u)

1− k sn4(u)

=
dn2(u) + cn2(u)

[
dn2(u)− 1

]
dn2(u)− cn2(u)

[
dn2(u)− 1

] (24)

4.5 Half Arguments

sn2( 1
2u) =

1− cn(u)
1 + dn(u)

(25)

cn2( 1
2u) =

cn(u) + dn(u)
1 + dn(u)

(26)

dn2( 1
2u) =

k1 + dn(u) + k cn(u)
1 + dn(u)

(27)

5 Derivatives

fn(u, k)
d

du
fn(u, k)

cn(u, k) − sn(u, k) dn(u, k)
dn(u, k) −k sn(u, k) cn(u, k)
sn(u, k) cn(u, k) dn(u, k)

cd(u, k) k1 sd(u, k) nd(u, k)
nd(u, k) k sd(u, k) cd(u, k)
sd(u, k) cd(u, k) nd(u, k)

dc(u, k) k1 nc(u, k) sc(u, k)
nc(u, k) dc(u, k) nc(u, k)
sc(u, k) dc(u, k) nc(u, k)

cs(u, k) −ds(u, k) ns(u, k)
ds(u, k) − cs(u, k) ns(u, k)
ns(u, k) − cs(u, k) ds(u, k)

Table 1: Derivatives of Jacobian Elliptical Functions, sep-
arated by poles. Not that the derivative is proportional to
the two copolar functions.

6 Differential Equations

The functionscn(u, k), dn(u, k), andsn(u, k) are solu-
tions to the differential equations

d2f

dx2
= −(1 + k2)f + 2k2f3 (28)

d2f

dx2
= −(1− 2k2)f − 2k2f3 (29)

d2f

dx2
= (2− k2)f − 2f3 (30)
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