
Start with conservation of mass and momentum (neglecting fric-
tion, assuming Boussinesq):

Du

Dt
= −

∇p

ρ
+ g (1)

Assume irrotational flow, i.e. u = ∇φ, so (1) can be written as

∇
[
∂tφ +

1

2
(∇φ · ∇φ) +

p

ρ
− gz

]
= 0 (2)

Incorporate constant of integration into φ, which is defined by

∂tφ +
1

2
(∇φ · ∇φ) +

p

ρ
− gz = 0 (3)

and (from irrotational assumption)

∇2φ = 0 (4)



Boundary Conditions at Bottom

No flow through bottom: ∂zφ |z=−h= 0

Boundary Conditions at Surface

Vertical flow:
∂φ

∂z

∣∣∣∣
z=0

=
∂η

∂t
+

∂φ

∂z

∣∣∣∣
z=0

∂η

∂x
(5)

Horizontal flow (with no pressure gradient along surface):

∂2φ

∂x∂t
+

∂φ

∂x

∂2φ

∂x2
+

∂φ

∂z

∂2φ

∂x∂z
+ g

∂η

∂x
= 0 (6)



More Assumptions

Assume two dimensional (∂y = 0)

Make a long wave approximation (δ ≡ (h`−1)2 � 1),

Make a small amplitude approximation (ε ≡ ah−1 � 1)

Assume ε and δ are of the same order (εδ−1 = O(1))



Expand in a power series in z̃ = z − h:

φ =
∞∑

n=0

z̃nφ̃n(x, t) (7)

Laplace’s equation (4) gives a recursion relation:

∞∑
n=0

z̃n
[
∂xxφ̃n + (n + 2)(n + 1)φ̃n+2

]
= 0 (8)

No flow through the boundary implies φ̃1 = 0, so all odd terms

vanish.



Results of Expansion

φ =φ̃o −
1

2
z̃2∂xxφ̃o + . . . (9)

u =φx = ∂xφ̃o −
1

2
z̃2∂xxxφ̃o + . . . (10)

w =φz = −z̃∂xxφ̃o +
1

6
z̃3∂xxxxφ̃o + . . . (11)



Non-Dimensionalization

x′ =
x

`
, z′ =

z

h
, t′ =

tco

l
, η′ =

η

a
, φ′ =

φ

ε`co

(The surface is at εη̄)

φ′ =φ̃′o −
1

2
(1 + εη′)2

∂2φ̃′o
∂x′2

+ O(ε2) (12)

u′ =
∂φ̃′o
∂x′

−
1

2
(1 + εη′)2

∂3φ̃′o
∂x′3

+ O(ε2) (13)

w′ =− δ

[
(1 + εη′)

∂2φ̃′o
∂x′2

φ̃′o +
1

6
δ
∂4φ̃′o
∂x′4

]
+ O(ε2) (14)



At the Surface

If we introduce u′o = ∂x′φ̃
′
o, then after a little reworking (5) be-

comes (dropping the primed notation)

∂η

∂t
+ εuo

∂η

∂x
+ (1 + εη)

∂uo

∂x
+

δ

6

∂3uo

∂x3
= 0 (15)

and (6) becomes

∂uo

∂t
−

δ

2

∂3uo

∂x2∂t
+ εuo

∂uo

∂x
+

∂η

∂x
= 0 (16)

to O(ε2).

At O(1),

∂tη + ∂xuo = 0 = ∂tuo + ∂xη (17)

so η and uo are both solutions to the wave equation with a
(dimensionless) wave speed of unity.



Use the ansatz∗ that η and uo are similar at zeroth order,

uo ≡ η + εF(x, t) + δG(x, t) + O(ε2) (18)

and rewrite our surface boundary conditions in terms of η:

∂η

∂t
+

∂η

∂x
+ε

(
∂F
∂t

+ η
∂η

∂x

)
+ δ

(
∂G
∂t

−
1

2

∂3η

∂x2∂t

)
= 0 (19)

∂η

∂t
+

∂η

∂x
+ε

(
∂F
∂x

+ 2η
∂η

∂x

)
+ δ

(
∂G
∂x

−
1

6

∂3η

∂x3

)
= 0 (20)

Subtraction gives

ε

(
∂F
∂x

−
∂F
∂t

+ 2η
∂η

∂x

)
+ δ

(
∂G
∂x

−
∂G
∂t

−
1

2

∂3η

∂x2∂t
−

1

6

∂3η

∂x3

)
= 0 (21)

∗assumed form not based on an underlying theory



ε

(
∂F
∂x

−
∂F
∂t

+ 2η
∂η

∂x

)
+ δ

(
∂G
∂x

−
∂G
∂t

−
1

2

∂3η

∂x2∂t
−

1

6

∂3η

∂x3

)
= 0

Expecting F and G to obey the wave equation with a (dimen-

sionless) wave speed of unity gives

∂F
∂x

= −
∂F
∂t

,
∂G
∂x

= −
∂G
∂t

and hence

F = −
1

4
η2, G = −

1

3

∂2η

∂x2

and

uo = η −
ε

4
η2 +

δ

3

∂2η

∂x2
+ O(ε2) (22)



From the end of the last slide,

uo = η −
ε

4
η2 +

δ

3

∂2η

∂x2
+ O(ε2).

(15) is reproduced here:

∂η

∂t
+ εuo

∂η

∂x
+ (1 + εη)

∂uo

∂x
+

δ

6

∂3uo

∂x3
= 0

Inserting our solution for uo into (15) yields the KdV equation:

∂η

∂t
+

∂η

∂x
+

3

2
εη

∂η

∂x
+

δ

6

∂3η

∂x3
= 0 (23)


