Start with conservation of mass and momentum (neglecting friction, assuming Boussinesq):

$$
\begin{equation*}
\frac{D \mathbf{u}}{D t}=-\frac{\nabla p}{\rho}+\mathbf{g} \tag{1}
\end{equation*}
$$

Assume irrotational flow, i.e. $\mathbf{u}=\nabla \phi$, so (1) can be written as

$$
\begin{equation*}
\nabla\left[\partial_{t} \phi+\frac{1}{2}(\nabla \phi \cdot \nabla \phi)+\frac{p}{\rho}-g z\right]=0 \tag{2}
\end{equation*}
$$

Incorporate constant of integration into ϕ, which is defined by

$$
\begin{equation*}
\partial_{t} \phi+\frac{1}{2}(\nabla \phi \cdot \nabla \phi)+\frac{p}{\rho}-g z=0 \tag{3}
\end{equation*}
$$

and (from irrotational assumption)

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{4}
\end{equation*}
$$

Boundary Conditions at Bottom

No flow through bottom: $\left.\partial_{z} \phi\right|_{z=-h}=0$
Boundary Conditions at Surface

Vertical flow:

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial z}\right|_{z=0}=\frac{\partial \eta}{\partial t}+\left.\frac{\partial \phi}{\partial z}\right|_{z=0} \frac{\partial \eta}{\partial x} \tag{5}
\end{equation*}
$$

Horizontal flow (with no pressure gradient along surface):

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x \partial t}+\frac{\partial \phi}{\partial x} \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial \phi}{\partial z} \frac{\partial^{2} \phi}{\partial x \partial z}+g \frac{\partial \eta}{\partial x}=0 \tag{6}
\end{equation*}
$$

More Assumptions

Assume two dimensional $\left(\partial_{y}=0\right)$
Make a long wave approximation $\left(\delta \equiv\left(h \ell^{-1}\right)^{2} \ll 1\right)$, Make a small amplitude approximation $\left(\epsilon \equiv a h^{-1} \ll 1\right)$ Assume ϵ and δ are of the same order $\left(\epsilon \delta^{-1}=O(1)\right)$

Expand in a power series in $\tilde{z}=z-h$:

$$
\begin{equation*}
\phi=\sum_{n=0}^{\infty} \tilde{z}^{n} \tilde{\phi}_{n}(x, t) \tag{7}
\end{equation*}
$$

Laplace's equation (4) gives a recursion relation:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \tilde{z}^{n}\left[\partial_{x x} \widetilde{\phi}_{n}+(n+2)(n+1) \tilde{\phi}_{n+2}\right]=0 \tag{8}
\end{equation*}
$$

No flow through the boundary implies $\widetilde{\phi}_{1}=0$, so all odd terms vanish.

Results of Expansion

$$
\begin{align*}
\phi & =\tilde{\phi}_{o}-\frac{1}{2} \tilde{z}^{2} \partial_{x x} \tilde{\phi}_{o}+\ldots \tag{9}\\
u & =\phi_{x}=\partial_{x} \tilde{\phi}_{o}-\frac{1}{2} \tilde{z}^{2} \partial_{x x x} \tilde{\phi}_{o}+\ldots \tag{10}\\
w & =\phi_{z}=-\tilde{z} \partial x x \tilde{\phi}_{o}+\frac{1}{6} \tilde{z}^{3} \partial x x x x x \tilde{\phi}_{o}+\ldots \tag{11}
\end{align*}
$$

Non-Dimensionalization

$$
x^{\prime}=\frac{x}{\ell}, \quad z^{\prime}=\frac{z}{h}, \quad t^{\prime}=\frac{t c_{o}}{l}, \quad \eta^{\prime}=\frac{\eta}{a}, \quad \phi^{\prime}=\frac{\phi}{\epsilon \ell c_{o}}
$$

(The surface is at $\epsilon \bar{\eta}$)

$$
\begin{align*}
\phi^{\prime} & =\widetilde{\phi}_{o}^{\prime}-\frac{1}{2}\left(1+\epsilon \eta^{\prime}\right)^{2} \frac{\partial^{2} \widetilde{\phi}_{o}^{\prime}}{\partial x^{\prime 2}}+O\left(\epsilon^{2}\right) \tag{12}\\
u^{\prime} & =\frac{\partial \widetilde{\phi}_{o}^{\prime}}{\partial x^{\prime}}-\frac{1}{2}\left(1+\epsilon \eta^{\prime}\right)^{2} \frac{\partial^{3} \widetilde{\phi}_{o}^{\prime}}{\partial x^{\prime 3}}+O\left(\epsilon^{2}\right) \tag{13}\\
w^{\prime} & =-\delta\left[\left(1+\epsilon \eta^{\prime}\right) \frac{\partial^{2} \widetilde{\phi}_{o}^{\prime}}{\partial x^{\prime 2}} \widetilde{\phi}_{o}^{\prime}+\frac{1}{6} \delta \frac{\partial^{4} \tilde{\phi}_{o}^{\prime}}{\partial x^{\prime 4}}\right]+O\left(\epsilon^{2}\right) \tag{14}
\end{align*}
$$

At the Surface

If we introduce $u_{o}^{\prime}=\partial_{x^{\prime}} \tilde{\phi}_{o}^{\prime}$, then after a little reworking (5) becomes (dropping the primed notation)

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}+\epsilon u_{o} \frac{\partial \eta}{\partial x}+(1+\epsilon \eta) \frac{\partial u_{o}}{\partial x}+\frac{\delta}{6} \frac{\partial^{3} u_{o}}{\partial x^{3}}=0 \tag{15}
\end{equation*}
$$

and (6) becomes

$$
\begin{equation*}
\frac{\partial u_{o}}{\partial t}-\frac{\delta}{2} \frac{\partial^{3} u_{o}}{\partial x^{2} \partial t}+\epsilon u_{o} \frac{\partial u_{o}}{\partial x}+\frac{\partial \eta}{\partial x}=0 \tag{16}
\end{equation*}
$$

to $O\left(\epsilon^{2}\right)$.
At $O(1)$,

$$
\begin{equation*}
\partial_{t} \eta+\partial_{x} u_{o}=0=\partial_{t} u_{o}+\partial_{x} \eta \tag{17}
\end{equation*}
$$

so η and u_{o} are both solutions to the wave equation with a (dimensionless) wave speed of unity.

Use the ansatz* that η and u_{o} are similar at zeroth order,

$$
\begin{equation*}
u_{o} \equiv \eta+\epsilon \mathcal{F}(x, t)+\delta \mathcal{G}(x, t)+O\left(\epsilon^{2}\right) \tag{18}
\end{equation*}
$$

and rewrite our surface boundary conditions in terms of η :

$$
\begin{align*}
& \frac{\partial \eta}{\partial t}+\frac{\partial \eta}{\partial x}+\epsilon\left(\frac{\partial \mathcal{F}}{\partial t}+\eta \frac{\partial \eta}{\partial x}\right)+\delta\left(\frac{\partial \mathcal{G}}{\partial t}-\frac{1}{2} \frac{\partial^{3} \eta}{\partial x^{2} \partial t}\right)=0 \tag{19}\\
& \frac{\partial \eta}{\partial t}+\frac{\partial \eta}{\partial x}+\epsilon\left(\frac{\partial \mathcal{F}}{\partial x}+2 \eta \frac{\partial \eta}{\partial x}\right)+\delta\left(\frac{\partial \mathcal{G}}{\partial x}-\frac{1}{6} \frac{\partial^{3} \eta}{\partial x^{3}}\right)=0 \tag{20}
\end{align*}
$$

Subtraction gives

$$
\begin{equation*}
\epsilon\left(\frac{\partial \mathcal{F}}{\partial x}-\frac{\partial \mathcal{F}}{\partial t}+2 \eta \frac{\partial \eta}{\partial x}\right)+\delta\left(\frac{\partial \mathcal{G}}{\partial x}-\frac{\partial \mathcal{G}}{\partial t}-\frac{1}{2} \frac{\partial^{3} \eta}{\partial x^{2} \partial t}-\frac{1}{6} \frac{\partial^{3} \eta}{\partial x^{3}}\right)=0 \tag{21}
\end{equation*}
$$

*assumed form not based on an underlying theory

$$
\epsilon\left(\frac{\partial \mathcal{F}}{\partial x}-\frac{\partial \mathcal{F}}{\partial t}+2 \eta \frac{\partial \eta}{\partial x}\right)+\delta\left(\frac{\partial \mathcal{G}}{\partial x}-\frac{\partial \mathcal{G}}{\partial t}-\frac{1}{2} \frac{\partial^{3} \eta}{\partial x^{2} \partial t}-\frac{1}{6} \frac{\partial^{3} \eta}{\partial x^{3}}\right)=0
$$

Expecting \mathcal{F} and \mathcal{G} to obey the wave equation with a (dimensionless) wave speed of unity gives

$$
\frac{\partial \mathcal{F}}{\partial x}=-\frac{\partial \mathcal{F}}{\partial t}, \quad \frac{\partial \mathcal{G}}{\partial x}=-\frac{\partial \mathcal{G}}{\partial t}
$$

and hence

$$
\mathcal{F}=-\frac{1}{4} \eta^{2}, \quad \mathcal{G}=-\frac{1}{3} \frac{\partial^{2} \eta}{\partial x^{2}}
$$

and

$$
\begin{equation*}
u_{o}=\eta-\frac{\epsilon}{4} \eta^{2}+\frac{\delta}{3} \frac{\partial^{2} \eta}{\partial x^{2}}+O\left(\epsilon^{2}\right) \tag{22}
\end{equation*}
$$

From the end of the last slide,

$$
u_{o}=\eta-\frac{\epsilon}{4} \eta^{2}+\frac{\delta}{3} \frac{\partial^{2} \eta}{\partial x^{2}}+O\left(\epsilon^{2}\right)
$$

(15) is reproduced here:

$$
\frac{\partial \eta}{\partial t}+\epsilon u_{o} \frac{\partial \eta}{\partial x}+(1+\epsilon \eta) \frac{\partial u_{o}}{\partial x}+\frac{\delta}{6} \frac{\partial^{3} u_{o}}{\partial x^{3}}=0
$$

Inserting our solution for u_{0} into (15) yields the KdV equation:

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}+\frac{\partial \eta}{\partial x}+\frac{3}{2} \epsilon \eta \frac{\partial \eta}{\partial x}+\frac{\delta}{6} \frac{\partial^{3} \eta}{\partial x^{3}}=0 \tag{23}
\end{equation*}
$$

