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Turkington et al.’s Variational Priniciple

Define a streamfunction, ¢ (xz,y). In 2-dimensions, start with
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Now we introduce a density-weighted vorticity
o= -V (pV¥)
and taking V- (3) yields
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For a steady, translational feature, p = p(x—ct,y), 0 = o(x —ct, y)
and Equations (2) and (5) can be written as

J(p, v —cy) =0 (6)

J(o, ¢ —cy) + J(p,gy— 3 | Vi [2) =0 (7)

Now, consider a density field

p(z,y) = p(y — n(z,y)) (8)
where n(x,y) is the displacement of an isopycnal from its back-

ground state p(y) (i.e. n ~ 0 as xz — £oo). Hence (6) can be
written as

J(py—m) v —cy) =p(y—n)J(y—n,v—cy) =0 ©)
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It can readily be shown that

Jy—m—cy) =J(y—nv—cn) =0 (10)
and that the boundary conditions impose
Y = cn. (11)
T he vorticity equation can be written as
J(y—mn,co+p'(y—m)lgn— 3¢ | Vn |?]) =0 (12)
which vyields
(o) —
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Combining (11) and (13) gives the eigenvalue problem
E'(n) F'(n)
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E'(n) F)
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where A = ghc¢—2 and h is the water depth.
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Note that the Kinetic Energy of the system is ¢2E(n), and that
the Available Potential Energy of the system is ghF'(n).
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Hence, given the appropriate boundary conditions, the structure
of an arbitrary solitary internal wave can be found by solving (14)
with the variational principle

E(n) — min subject to F(n)=A (17)



