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Abstract.

A method for modifying currently existing ocean models to make them non-
Boussinesq has been advocated by McDougall, Greatbatch and Lu, and implemented
in the POP model by Greatbatch et al.. Here, we provide theoretical justification for
combining the above modifications with the Temporal Residual Mean (TRM) approach
of McDougall and McIntosh. The TRM is a method for including the skew flux of
tracers caused by the adiabatic stirring of mesoscale eddies in non-eddy-resolving ocean
models. The paper provides the justification for simultaneously undertaking these two
model improvements, and the physical interpretation of the model variables in this

situation.



1. Introduction

The stirring by the mesoscale eddy field in the ocean is thought to occur primarily
in the local, neutral tangent plane. Indeed, diapycnal transport (that is, transport
across the local neutral tangent plane) is thought to be weak throughout the interior
of the ocean, raising questions as to how the deep waters of the ocean are returned
to the surface in order to close the thermohaline circulation (e.g. Munk and Wunsch,
1998; Webb and Suginohara, 2001). The accurate representation of mesoscale stirring
is therefore an important issue in ocean modelling. In non-eddy permitting models, the
mesoscale stirring must be parameterized, and the issue arises as to how the equations
of motion should be averaged. To respect the fact that stirring occurs primarily along,
rather than across the local neutral tangent plane, many studies have adopted isopycnal
averaging [e.g. Gent et al., 1995; Dukowicz and Smith, 1997; Greatbatch, 1998; Dukowicz
and Greatbatch, 1999; Smith, 1999]. Difficulties arise, however, at the ocean surface and
bottom, where isopycnals intersect the boundaries in a highly, time-dependent fashion,
and it is often not clear what boundary conditions are appropriate to isopycnally
averaged quantities (e.g. Killworth, 2001). McDougall and McIntosh(2001; hereafter
MM) address these difficulties by introducing the Temporal-Residual-Mean (TRM). The
TRM provides a way to represent isopycnally-averaged equations and quantities in a
height-coordinate framework. In MM, the horizontal component of the tracer transport
velocity (the velocity by which the appropriately averaged tracer field is advected) is the
thickness-weighted average at constant density of the instantaneous horizontal velocity.
MM represent the eddy-induced part of the transport by a quasi-Stokes streamfunction
for the difference between the tracer transport velocity and the Eulerian mean velocity
averaged at fixed height. MM note that the behaviour of the quasi-Stokes streamfunction
near the boundaries can easily be understood, and since the boundary conditions that
must be applied to the Eulerian mean velocity are straightforward, the MM framework

provides a potentially tractable approach to mesoscale eddy parameterization in ocean



models, particularly the widely used height-coordinate models (e.g. the MOM code
[Pacanowski and Griffies, 1999; Griffies et al., 2000]).

The treatment of the TRM in MM uses the Boussinesq equations of motion. Here
we show how to generalise the TRM to a non-Boussinesq ocean using the approach of
McDougall, Greatbatch and Lu(2002; hereafter MGL). The result is an elegant, unified
treatment, combining the TRM approach to mesoscale eddy parameterization with the
accurate treatment of the non-Boussinesq equations of motion introduced by MGL.
The basic message of the paper is that to make ocean models fully non-Boussinesq, the
modifications to ocean model code, advocated by MGL and illustrated by Greatbatch
et al.(2001), can be implemented in conjunction with the TRM approach of MM
for including the skew flux of tracers caused by the adiabatic stirring of mesoscale
eddies. The paper provides the justification for simultaneously undertaking these two
model improvements, and the physical interpretation of the model variables in this
situation. For an example in which the Gent and McWilliams(1990) parameterization
for mesoscale eddies is used in a non-Boussinesq global ocean model, consistent with the
tracer equation approach advocated in Section 6 of this paper, readers are referred to

Section 4b in Greatbatch et al.(2001).

2. The instantaneous equations

The treatment in MGL is based entirely on the traditional height coordinates
(x,y, z), where (x,y) denotes the horizontal position and z is height above a reference
geopotential surface. As in that paper, our objective is to obtain equations for averaged
variables in a height-coordinate framework. However, in order to most faithfully respect
the mixing characteristics of mesoscale eddies, we wish to carry out the averaging in
(x,y,7) coordinates (hereafter v- or “isoneutral” coordinates). In -coordinates, the
conservation equations are written with respect to the neutral tangent plane at each

location. Equivalently, v can be interpreted as the locally-referenced potential density.



It is important to realise that because our objective is to obtain a set of equations in

height coordinates (i.e. at a point in space), it is only necessary for v to be defined

locally for the purposes of averaging. It follows that issues concerning the inability to

define a neutral density variable globally (McDougall, 1987; McDougall and Jackett,

1998; Jackett and McDougall, 1997; Eden and Willebrand, 1999) are circumvented.
We begin by defining

D~

where %t is the rate of change following a fluid particle being carried by the instantaneous
flow, so that the instantaneous dianeutral velocity e (in ms™') is Q/,. This definition
of @ implies that if v were a conservative variable, then —p() would be the divergence
of the molecular flux of 7. In v-coordinates, the instantaneous conservation equations

for mass, tracer and momentum are:
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Here the notation is standard, with U denoting the three-dimensional, instantaneous
velocity, and V its horizontal component (as in MM). V denotes the usual three
dimensional del operator and V., the two-dimensional del operator at constant +.
Since we shall later want to transform equations averaged in 7y-coordinates to height
coordinates, it is convenient to also write down the equivalent set of conservation

equations in height coordinates; that is
pi+ V- (pU) =0 (5)

(p7)e + V- (pUT) = X (6)

(pU); + V- (pUU) + 22 x (pU) = -Vp—kgp+ Y. (7)



In the above, —X and —Y are the divergences of the instantaneous molecular fluxes of
7 and U given by X =V - (pk,V7) and Y = V- (uVU) + :V(uV - U), and X could
also include cross-diffusion effects such as the Soret and Dufour effects. For details on
the transformation between height coordinates and a generalised coordinate system in
which the depth, z, is replaced by a new variable (in our case 7y), readers are referred to

Appendix A of de Szoeke and Samelson(2002).

3. Mass-weighted averaging in “isoneutral” coordinates

We are now ready to average the equations in 7-coordinates. As in Section 3
of MM, we use 7 to denote the isoneutral surface, v = 7, whose average height is
z. In the following, < > is used to denote averaging at constant -y, an overbar to
denote averaging at fixed height, and ~ to denote “thickness-weighted” averaging in
~v-coordinates. Noting that % is the thickness (de Szoeke and Bennett, 1993), the
thickness-weighted average of any quantity, A, is defined as A= ¥, < A/v, > (see, for
example, equation(28) of MM, and note that < vy, >=7,).

The appearance of the factor

o=2L (8)

Yz

in equations (2)-(4) makes it natural to use o-weighted averaging when averaging in
~v-coordinates. In the context of zonal-averaging, o-weighted averaging is referred

to as “mass-weighted” averaging by Andrews et al.(1987), and is also employed by
Tung(1986). Here, the averaging operator should be thought of as a long time average
(Davis, 1994). (We note that our analysis is appropriate to models that do not explicitly

resolve the mesoscale eddy field.) We next observe that

<0 >=

: (9)
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The mass-weighted averages of velocity, ﬂ"’, and tracer concentration, 7°, and the



deviations from these averages, are defined by

Ur=<oU>/<0> #=<o0r>/<0> U"=U-U’ and 7" =1—7",
(10)
noting that < cU" >=< o7 >= 0.
We now apply mass-weighted averaging to the instantaneous conservation equations

(2)-(4) to obtain
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The molecular flux terms have been dropped, but could readily be retained, for example,

by an additional term, f—z on the right hand side of (12).

4. Transforming to z-coordinates

We now transform the mass-weighted averaged equations to height coordinates.
In order to do so, we note that the form of the averaged equations (11)-(13) is exactly
the same as that of the instantaneous equations (2)-(4), except that instantaneous
variables are replaced by mass-weighted variables, p is replaced by p, and there are
additional terms associated with turbulent correlations on the right hand sides. We
can therefore transform directly to height coordinates using the equivalence of the
instantaneous ~y-coordinate equations (2)-(4) and their height-coordinate counterparts
(5)-(7). However, the velocity variable in height-coordinates that results from the
transformation is not ij, but rather a new velocity variable U? that has the same

horizontal components as fJ”, but a different vertical component, w®. In fact

U = (V?, w) (14)



where
DP
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is the advective derivative following the mass-weighted average flow in ~-coordinates;
that is (Vp, Q”). It should be noted that w® is not the same as the mass-weighted
average, w”, of the instantaneous vertical velocity, w. Rather, w® is the vertical velocity
variable that results from the coordinate transformation. (The same issue arises in de
Szoeke and Bennett(1993); compare equation in (A4) in that paper with equation (15)
above).

Transforming the averaged equations to height coordinates, we now obtain:

mass conservation:

po+ V- (pU) =0 (17)

tracer conservation:

(P7#)i + V - (PU#7) = ~7,V5 - (< oV"T" >) = 4,(< 0Q"r" >);  (18)

momentum conservation:

(pU?), + V - (UU?) + 20 x (5U”) = —[Vp] —kgp +

3.V (< o VU >) — (< 0Q"U" >); (19)

where, in the momentum equation, the advective velocity is U (which differs from U
only in its vertical component). The left-hand sides of equations (17)-(18) have the same
form as their density-weighted averaged counterparts in MGL (cf. equations (20)-(21)

in MGL), with p replacing the Eulerian mean density p, mass-weighted average tracer



concentration, 77, replacing density-weighted average tracer concentration, 77, and U?
replacing the density-weighted averaged velocity, U (see equation (19) in MGL for the
definition of density-weighted averages). Likewise, the momentum conservation equation
(19) is also analagous to its density-weighted counterpart (equation (22) in MGL), but
is complicated by the appearance of the two velocity variables, U? and U”. On the
other hand, in contrast to MGL, the right-hand side of these equations now recognise
the stratified nature of oceanic motions. and very importantly, the pressure gradient in
(19) is thickness-weighted (which leads to the form stress term in equation (28)).

At this stage, it is convenient to recognise that since our averaged equations apply
to the large scale flow of the ocean, we can simplify (19) by (i) making the hydrostatic
approximation and (ii) neglecting the contribution from the mass-weighted average
vertical velocity, w”, to the Coriolis term (Gill, 1982, Chapter 11). Since the two
velocity variables, U? and ﬂ”, differ only in their vertical components, making these
simplifications allows us to work with the single velocity variable, U* = (V”, w?®). We

therefore replace (19) by

(AV?), + V - (JUAV?) 4 2Q x (V*) = —[V yp]

—A, V5 (< oVI'V" S) = 3,(< 0Q"V" >)s, (20)

and the hydrostatic equation
0=—p. — gp, (21)
where Vy is the horizontal gradient operator. Further discussion of the fully

non-hydrostatic equations can be found in Section 6.

We now follow the same procedure as in MGL and define a new velocity variable

U=
U =" (22)

Po
U* has horizontal and vertical components V* = V2 and w* = ﬁ;"—a respectively, and is

bl
o o

analogous to u defined by (23) in MGL. p, is a constant reference density. Using this
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velocity variable, (17), (18) and (20) become

(pﬁ)t FV-U =0 (23)
ﬁ ~p ¥ AP\ __ ;YZ n__mnt ;5/‘2 mn_n
(=7)+ V- (U7 )——p—V:,-(< oV"r >)_,0_(< oQ" " >)5 (24)

and

o ]. e Nz
V% + V- (%U*V*) F20x V' =~ (Vp] - Z_vi (< oV )

—E(< oQ"V" >)5. (25)
o
So far, we have left the turbulent correlation terms in their y-coordinate

formulation. We now follow MM and parameterize these terms using symmetric
diffusion tensors, S” for tracer and S" for momentum. We also note, following MM,
that the thickness-weighted horizontal pressure gradient [V/;p] in (25) can be written
as the sum of the Eulerian mean horizontal pressure gradient Vgp plus a form stress
term. Likewise, we follow MM and replace the thickness-weighted vertical pressure
gradient in the hydrostatic equation (21) by the Eulerian mean vertical pressure

gradient (there is further discussion on this point in Section 6, following equation (50)).

Equations(23)-(25) and (21) can now be written as

(pﬁ)t +V-U =0 (26)
(£40), 4+ V- (U"#7) = V - (STV#) (27)
o 1 o
V54V (%U*V*) FXV =~ Vup V- (suv%v* ~kF) (28)

Here k is a unit vector in the upwards vertical direction, and F is a two dimensional
vector in the horizontal plane representing the eddy form stress. As in MM, the diffusion

tensors S™ and S" are the symmetric diffusion tensors of Redi(1982), combining diffusion
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along the local y-surface (or local neutral tangent plane) with very much weaker
isotropic diffusion by small-scale turbulence which is commonly referred to as diapycnal
diffusion. The factor %" in the S" term ensures that kinetic energy is dissipated in the
ocean interior (see Greatbatch et al.(2001), Section 3¢, and note that kinetic energy for
this system of equations is given by KE = 3/ VP . VP).

As in MGL, we note that in steady state, equations (26)-(29) differ from those
currently carried by hydrostatic Boussinesq ocean models that include form drag only
by the factor of %" in the momentum flux divergence terms, even though these equations
are, in fact, fully non-Boussinesq. We also note, following MGL, that the Boussinesq

approximation corresponds to replacing £ by 1 everywhere in (26)-(29) except in the
gravitational acceleration term, and that there is no systematic error associated with
making the Boussinesq approximation in unsteady situations (see Section 6 of MGL
and note that the analysis in MGL carries over with a suitable reinterpretation of the
variables). An additional feature is the eddy form stress term —V - (k F) associated
with the eddies. The appearance of this term is not a consequence of the use of
non-Boussinesq equations of motion. In fact, it also appears in MM, equation (66),
where F = — fk x ¥, ¥ is the quasi-Stokes streamfunction (see Section 5) and f is the
Coriolis parameter. The duality between applying an eddy parameterization in either
the tracer or momentum equations has been noted by Greatbatch and Lamb(1990),
Gent et al.(1995), Greatbatch(1998) and Greatbatch(2001) (the latter in the context
of averaging at fixed height). The traditional approach is to add the advection
associated with the eddy-induced transport to the tracer equation (e.g. Danabasoglu
and McWilliams, 1995; Hirst and McDougall, 1996), where it can also be written as a
skew diffusion (e.g. Griffies, 1998; MM), an issue we explore in Section 6. In the case
of the TRM, putting the eddy parameterization in the momentum equation arises quite
naturally, and has the advantage, as in MM that, at least in the hydrostatic case, the

averaged equations (26)-(29) use only one velocity variable, namely U*. This contrasts
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with the usual situation, where writing the averaged momentum equation in a form
to take account of the eddy forcing requires carrying two velocity variables, as in the

Transformed Eulerian Mean (Andrews et al., 1987), and as in Greatbatch(2001).

5. Physical Interpretation and Boundary Conditions

We begin by noting that the horizontal component of the velocity variable U*, can

be written
VP 1 pV
V* — p 5, < —
Po Yz Po

In other words, V* is the thickness-weighted average on a y-surface of pﬁoV. We now

> . (30)

apply the analysis in Section 2 of MM to the horizontal velocity variable pﬁoV, rather
than V, as done there. We therefore consider the surface v = 7, whose average height
is z, and whose instantaneous height is z, + z., (2!, = 0). Taking the ocean bottom to be

at z = —H, we follow MM to obtain

Za+2h Za+2h
/ de—/ pvm+/ LAv» (31)
H  po H o Za Po

where overbar denotes the usual long time average. The term on the left hand side is
the scaled (by a factor p,) average horizontal mass transport per unit area below the

surface v = v,. As in MM, we now define a quasi-Stokes streamfunction ¥ by

za—l—za p
W (z,) :/ —Vdz (32)
Za Po
so that
Za+2) P B Za p—
Pvdz= [ Evdz + 0(z,) (33)
—-H Po —H pPo

W(z,) is the (scaled) horizontal mass transport below the v = =, surface that is
associated with the eddies.
Exactly as in MM, we can go further and consider the average horizontal mass

transport between isopycnals, that is

Trzatzl o P o« p
de = de + W(z,) — U(2p)- (34)

b+zb
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The left hand side of this equation is the thickness-weighted (scaled) horizontal mass
flux between the surfaces v = v, and v = 73, so that dividing by (2, — z;) and using (30)

we obtain in the limit (z, — 2,) — 0

v =" _Jiw, (35)

Here V is the horizontal component of the averaged velocity variable

— 50
u="
Po

(36)

introduced by equation (23) of MGL, and which MGL argue is the velocity variable that
is carried by models (note that here ~ is used to be consistent with MGL, not to denote
isoneutral averaging. In fact, U is averaged at fixed height). By analogy with MM, it
follows that the height-averaged velocity O corresponds to the Eulerian mean velocity

U in MM. We therefore define the quasi-Stokes velocity by

Us=U"-U. (37)

The quasi-Stokes velocity corresponds to what is usually called the eddy-induced
transport velocity, and is the velocity that must be added to U to take account of the

eddy-induced transport. Clearly the horizontal component of U® (i.e. V¥) is given by
Vi=w,. (38)

We next note that, exactly as in MM, an approximate expression for the quasi-Stokes

streamfunction, valid to cubic order in perturbation amplitude «, is

g L[ VY, (@V). <§>] +0() (39)

Po V- Yz Yz
where overbar denotes average at fixed height, ' denotes perturbation at fixed height,
and ¢ = %W is half the variance of v at height z.
As in MM, the physical interpretation provides guidance as to how the quasi-Stokes

streamfunction behaves as the surface and bottom boundaries are approached (see
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Section 8 of MM). As in MM, we recommend that the quasi-Stokes streamfunction
be tapered to zero on these boundaries, and that the tapering take place over the
boundary layer defined by the average height of y-surfaces that outcrop along these
boundaries during the averaging period used to define U*. This has consequences for
our averaged momentum equation, i.e. (28). As shown in MM, assuming the eddies to
be in geostrophic balance enables the form stress, F, arising from the thickness-weighted
average of the horizontal pressure gradient, to be expressed in terms of the quasi-Stokes

streamfunction as

F=—fkxU. (40)

The argument carries over directly to the non-Boussinesq case, leading to exactly the
same expression, i.e. (40) (noting that geostrophic balance for the instantaneous flow
takes the form fk x pV = —Vpgp in the non-Boussinesq system (see equation (7)). It
should also be noted that a more general expression for F in terms of ¥ can be obtained
by assuming a balance between the Coriolis, horizontal pressure gradient and a linear
(Rayleigh) friction term, i.e. fk x pV = —Vyp — epV. With € # 0, F no longer goes to
zero on the equator (where f = (), and the angle between the direction of F and that of
¥ now depends on the ratio of f to the Rayleigh friction coefficient, e.

Finally, we note, as in Appendix B of MM, that since the tracer variables are
mass-weighted averages, it is natural to interpret the density computed using the
equation of state carried by a model, i.e. p = ,0(5"’, ép,p), as the thickness-weighted
average density p (the correspondence is not exact, but, as argued in MM, the difference
is not likely to be important in practice). In hydrostatic models, this is the density that
would be used in the computation of the horizontal pressure gradient terms carried by
the model.

The bottom and free surface kinematic boundary conditions follow (with a suitable

reinterpretation of the variables) as in Greatbatch, Lu and Cai(2001). At the bottom,



15

z = —H, we have

w*=-V*-VyH at z=-H (41)

(equivalently, using (16), D?(z + H)/D?t = 0). At the surface we need to define what
we mean by the sea surface height. We do this, following Lu(2001) and Greatbatch, Lu

and Cai(2001), by choosing the sea surface height variable, here denoted 7, so that

0 naﬁ a * _ D _ D
| Ldz4 V- [ Viaz=—E-P-R)/p, (42)

H P
where E, P and R denote the mass flux per unit area associated with evaporation,
precipitation and river run-off, respectively. Combining (41) and (42) with the vertical

integral of the continuity equation (26) then gives
w* = (p/po)nf +V* Vg0 +(E—~P—R)/p, at z=n" (43)

We noted in passing that the sea surface height variable, n?, is a different sea surface
height variable from that in Greatbatch, Lu and Cai(2001), because of the different

averaging used for the variables that appear in equation (42).

6. Formulation based on the tracer equation

As noted in Section 4, the traditional approach to including the effects of mesoscale
stirring in coarse-resolution ocean models is to add the advection associated with the
eddy-induced transport to the tracer equation (e.g. Danabasoglu and McWilliams,
1995; Hirst and McDougall, 1996), rather than to parameterize the eddy forcing in
the averaged momentum equation, as in (26)-(29). In a Boussinesq framework, the
eddy-induced advection in the tracer equation can be written as a skew diffusion, as
discussed by Griffies(1998) and MM. Here, we outline the tracer equation approach in
the context of the non-Boussinesq formalism developed in this paper.

We begin by using (37) to write the averaged mass and tracer conservation
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equations (26) and (27) as

(pﬁ)t+v-(ﬁ+US) =0 (44)
and
(L30), + V- [(T+ U*)#] = V- (STV#) (45)

Po

where U*® is the quasi-Stokes velocity. In addition, we require the averaged momentum
equation, corresponding to the Eulerian mean momentum equation in height coordinates.

From equation(26) of MGL, this is

o F1 1 P o
UU0)+20x0= —p—Vp—kgpﬁJrv-(Av%U). (46)

| s

E+V-(

l

We also need the continuity equation satisfied by ﬁ; that is equation (24) in MGL,

namely

(%) +v.-U=0. (47)

An immediate complication is the appearance of the Eulerian mean density p in (46)
and (47), rather than p, as in (44) and (45). One consequence is that, in general, the
quasi-Stokes velocity U® is divergent and satisfies

s _ 2 pA_p
V.U = &(po), (48)

as can easily be verified from (44) and (47).

Since the density variable available to the model is identified as p, rather than p,
it follows immediately that a parameterization for p is required. The simplest such
parameterization is to put p = p. Doing so incurs an error that usually is quadratic
in perturbation amplitude in the ocean interior (see equation (28) in MM), but which
increases from second to first order as the surface and bottom boundaries are approached
(Killworth, 2001). The boundary layers over which the error increases are identical to
the boundary layers over which the quasi-Stokes streamfunction, ¥ should be tapered

to zero (i.e. the boundary layers discussed in Section 8 of MM that arise from the
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transient outcropping of y-surfaces associated with the eddies). To compare 7 and p, we
can use Figure 3 in Killworth’s paper. The figure shows a comparison between p and p
(with temperature substituted for p) from an eddy-resolving channel model experiment.
As noted by Killworth, over most of the domain, p and p are barely distinguishable from
each other, so that replacing p by p is almost certainly an acceptable approximation
there. It is only near the surface that p and p differ significantly, differences reaching as
much as 1 kg m~3. Since both p and p are of order 10*> kg m~—3, the implication is that
the error incurred in replacing p by p is expected to be about 0.1%. We can therefore
replace the factor p by p in the two momentum flux divergence terms in (46) without
incurring significant error (certainly, the error does not compromise the fact we are
working in a non-Boussinesq regime, since the Boussinesq approximation leads to an
error that is about a factor of 30 larger). An extension of the argument in Appendix B
of MM also allows us to replace p by p in the gravitational acceleration term (but see
the later discussion of this point after (50)). We now wish to replace p, by p; in (47).
In a statistically steady state (% = 0), there is clearly no error in doing this, since both
terms are then zero. In unsteady situations, the same argument as above shows that the
error is significantly less than the error in making the Boussinesq approximation, and is,
therefore, acceptable. Likewise, the analysis in Section 6 of MGL, adapting the method
of Lu(2001), can be used to show that there is no systematic error in the diapycnal
transport of tracer or momentum involved in this replacement.

In light of the above discussion, and in addition making the hydrostatic

approximation, we therefore replace (46) by

T . ]_
V,+ V- (2T V)+20xV = —Vup+ V- (AV%V);
P (]

and note that, to the same level of approximation, V - U® = 0, so that

VE=1,, w'= -V, (50)
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It follows that parameterization of U® (required in (44) and (45)) amounts to
parameterizing the quasi-Stokes streamfunction. Also, since the quasi-Stokes velocity
is non-divergent at this level of approximation, the contribution of U® to the mass
conservation equation, (44), can be ignored, while its contribution to the tracer equation,
(45), can be written in terms of a skew-diffusivity, as in Griffies (1998) and MM.

In going from (46) to (49), we have replaced p by p in the gravitational acceleration
term. An argument to justify this can be found in Appendix B of MM. MM’s argument
applies in the ocean interior, where p and p do not differ greatly. The same argument
can be extended to the surface, provided the depth over which p and p differ significantly
is not too deep (scale depth of order 10’s of meters), and the horizontal scale over which
the difference between p and p varies is not too small (on the order of 1000 kms). The
same argument can be used to justify going from equation (21) to equation (29) in
Section 4. (As MM point out, the error being discussed here actually appears as an
error in the horizontal pressure gradient term and so averages to zero when an area
average is taken over an area of high eddy activity.) It should be noted that although
we made the hydrostatic approximation in writing down (49), nothing in our discussion
of replacing p by p depends on making the hydrostatic approximation. In this sense,
the tracer equation approach discussed here is more suitable to nonhydrostatic regimes
than the approach taken in Section 4 where the hydrostatic approximation was used to
eliminate the need to carry two different velocity variables in (19).

The kinematic condition at the surface is obtained from (37) and (43) and is
@+ w' = (p/po)if + (V+V®)-Vyn'+ (E-=P-R)/p, at z=n"  (51)

Since the quasi-Stokes streamfunction is tapered to zero on the boundaries, we expect

w® = V5 -Vgn® at the surface, so that
W= (p/po)nf +V -Vun' +(E-=P—R)/p, at z=n" (52)

The kinematic boundary condition at the bottom is the same as equation (14) in
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Greatbatch, Lu and Cai(2001), i.e.

W=-V-VyH at z=—H. (53)

The latter is obtained by applying density-weighted averaging at fixed height to the

bottom kinematic condition applying to the instantaneous flow.

7. Summary and discussion

We have shown how the Temporal-Residual-Mean of McDougall and McIntosh(2001)
can be combined with the methodology of McDougall, Greatbatch and Lu(2002) so
that the non-Boussinesq equations of motion can be averaged in a way that respects
the fact that mesoscale eddies stir almost exclusively along the neutral tangent plane.
Since our averaged equations are written in height coordinates, we need only define
neutral surfaces locally, for the purposes of averaging, avoiding the difficulty that
neutral surfaces cannot, in general, be defined globally (McDougall, 1987; McDougall
and Jackett, 1988; Jackett and McDougall, 1997; Eden and Willebrand, 1999). We
note that the tracers carried by a model should be interpreted as the mass-weighted,
isoneutral-averaged tracer, and the horizontal velocity as the thickness-weighted average
of the horizontal mass flux per unit area, scaled by a representative density for sea
water. The horizontal component of the quasi-Stokes velocity is the difference between
this velocity and the height average of the new velocity variable introduced by MGL,
namely the horizontal mass flux per unit area averaged at constant height, scaled by the
same reference density. The quasi-Stokes velocity represents the eddy-induced transport
by the eddies, and its horizontal component can be expressed in terms of a quasi-Stokes
streamfunction that has an exact correspondence with the quasi-Stokes streamfunction
introduced by McDougall and McIntosh(2001). In view of this correspondence, the same
argument regarding the behaviour of the quasi-Stokes streamfunction near the surface

and bottom boundaries applies here, as it does in McDougall and McIntosh(2001), and
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is one of the advantages of the present approach.

It should be noted that the treatment given in McDougall, Greatbatch and Lu(2002)
of the averaged non-Boussinesq equations of motion, and the analysis of the errors
associated with making the Boussinesq approximation given in that paper, carry over to
the present paper without change. The only difference is the presence of the form drag
term in (28) and the different interpretation of the averaged variables: p, U* and 7 here,
compared with p, U and 7 there. The reason the analysis carries over without change
is the correspondence between the averaged equations (26)-(29) here, and (20)-(22) in
McDougall, Greatbatch and Lu(2002). Likewise, the method of Greatbatch, Lu and
Cai(2001) can be used to easily modify existing code for a Boussinesq, hydrostatic ocean
model to make it non-Boussinesq and consistent with the averaging being proposed
here. In Greatbatch, Lu and Cai(2001), the modifications are applied to the POP code
(see http://www.acl.lanl.gov/climate/models/pop/). The modifications have also been
applied in the MOM4 code where the cpu overhead is only a few per cent (Griffies,
personal communication; see http://www.gfdl.noaa.gov/MOM/MOM.html).

An interesting aspect of our study is the finding that the approach to mesoscale
eddy parameterization based on the averaged momentum equation (e.g. Greatbatch
and Lamb, 1990) is more straightforward than that based on the averaged tracer
equation. The tracer equation approach is complicated by the appearance of two
different density variables, p and p, the second of which is not available to the model.
Nevertheless, we argued that the error incurred in replacing p by p is small compared to
the error associated with the Boussinesq approximation, and is, therefore, acceptable.
In the momentum equation approach, the non-hydrostatic case is complicated by
the appearance of two different vertical velocity variables in the averaged equations
(17)-(19). This particular complication is removed when the hydrostatic approximation
is applied to the averaged equations and the contribution from the vertical velocity

is neglected in the Coriolis term. Both these simplifications apply to the large-scale
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flow of the ocean, of interest here. Issues we have not addressed include exactly how
the quasi-Stokes streamfunction should be tapered to zero at the surface and bottom
boundaries, and how surface fluxes can be parameterized in terms of the model variables.
These issues are intimately connected with the difficult problem if deciding how the
outcropping layers at the surface and bottom boundaries should be treated, and are left
for a future study.

Recently, de Szoeke and Samelson(2002) have pointed out that when the hydrostatic
approximation is made, there is a duality between the Boussinesq and non-Boussinesq
equations of motion. The duality is easily seen when the hydrostatic, non-Boussinesq
equations of motion are written using pressure, p, as the vertical coordinate. In

particular, the continuity equation then appears (in plane Cartesian coordinates) as

Ju Ov Ow

Dp

where w = ZF,

and so has the same form as the Boussinesq continuity equation written
in height-coordinates (see Holton(1981) for a detailed discussion of pressure coordinates
as used in meteorology). Assuming that the instantaneous flow is hydrostatic, and
taking the instantaneous non-Boussinesq equations of motion written in pressure
coordinates as the starting point, it is straightforward to apply the machinery of MM to
obtain an alternative formulation of the TRM appropriate to a non-Boussinesq ocean,
with the pressure, p, replacing the height, z, throughout MM'’s analysis, and isobaric
surfaces replacing geopotential surfaces throughout the interpretation. Since, from the
hydrostatic approximation, dp = —gpdz, the factors of p that appear in our analysis,
but not in the Boussinesq analysis of MM, would also appear in the pressure coordinate
analysis, following conversion to z-coordinates (note, in particular, that the thickness in
pressure coordinates is —% = gp%z, which differs from equation (8) only by the scaling

factor g). Indeed, the thickness-weighted, isoneutral-averaged variables in the pressure

coordinate case are identical to the mass-weighted, isoneutral-averaged variables in this
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paper. On the other hand, the interpretation of the Eulerian mean velocity, and hence
of the quasi-Stokes streamfunction, differs between the two cases. In our paper, the
horizontal component of the Eulerian mean velocity is the scaled horizontal mass flux
per unit area averaged at fixed height, whereas in the pressure coordinate approach, the
horizontal component of the Eulerian mean velocity is the average at constant pressure
of the horizontal velocity. The difficulty, discussed in Section 4, of having two different
density variables applies in the pressure coordinate case, as in the z-coordinate approach.
A disadvantage of the pressure-coordinate approach is the need for the instantaneous
flow to be hydrostatic.

Finally, we note that the Boussinesq TRM formulation of McDougall and
MeclIntosh(2001) is recovered by replacing p by p, everywhere in this paper, except in
the gravitational acceleration term.
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