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Abstract.

Traditionally, the conservation equations in oceanography include the Boussinesq
approximation, and the velocity variable is interpreted as the Eulerian mean velocity
averaged over turbulent scales. If such a view is adopted, then the conservation equations
for tracers contain errors that are often as large as the diapycnal mixing term. This
result has been known for about a decade and, at face value, implies that all Boussinesq
ocean models contain leading order errors in their conservation equations. To date
there has not yet been a solution proposed to avoid this conundrum. Here it is shown
that the conundrum can be solved by interpreting the horizontal velocity vector carried
by Boussinesq ocean models as the average horizontal mass flux per unit area divided
by the constant reference density that appears in the horizontal momentum equation.
We argue that the vector labelled the “velocity” in present ocean models is not, and
never was, the Eulerian mean velocity. If it were, then the conservation equations for
salinity anomaly and potential temperature would contain systematic errors whose
magnitude would be as large as the diapycnal mixing terms. By interpreting the model’s
horizontal “velocity” as being proportional to the horizontal mass flux per unit area,
the conservation equations in the present generation of Boussinesq models are actually
much more accurate even than previously thought. In particular, when these Boussinesq
models achieve a steady state, they are actually almost fully non-Boussinesq, and in
a non-steady state there is no systematic error in the diapycnal advective/diffusive
balance due to the Boussinesq approximation. With the above interpretation of the
model’s “velocity”, it is also relatively simple to change the model code to make it fully
non-Boussinesq even when the flow is unsteady.

A conclusion of our work is that the Boussinesq approximation actually consists of
three parts, not two, as has been assumed in the past. Traditionally, the Boussinesq
approximation consists of replacing (i) the equation for conservation of mass by the

equation for conservation of volume and (ii) the density that appears in the temporal



and advection operators by a constant reference density. Here we show that it is also
important to (iii) ensure that using a divergence free velocity to advect tracer does not
lead to significant error, an aspect of the Boussinesq approximation that has previously

been overlooked.



1. Introduction

The conservation equations of oceanography are treated in many texts, including
Batchelor (1967) and Gill (1982). In theoretical analysis and numerical modelling, it is
traditional to make the Boussinesq approximation where every appearance of density
is replaced by a fixed reference density except in the buoyant force in the vertical
momentum equation. Since the reference density is usually taken to be 1000 kg m™>
and since the in-situ density of seawater can be as large as 1050 kg m™2, it appears
as though the Boussinesq approximation leads to errors in the conservation equations
which are typically 3% but can be as large as 5%.

Spiegel and Veronis (1960) examined the conditions under which the effect of fluid
compressibility can be neglected in the mass conservation equation, the equation for
potential temperature, and the inertia term in the momentum equations. However,
their work did not consider the averaged equations in a turbulent fluid, and, more
seriously, they did not examine the error in the potential temperature equation that
arises from using a divergence free velocity as the advecting velocity. Concern about
neglecting the velocity divergence in the averaged Boussinesq tracer equation has been
raised by McDougall and Garrett (1992; hereafter MG) and Davis (1994). Using scale
analysis, MG found that the flux form of the averaged Boussinesq tracer equation is in
error by at least 30% in comparison with the diapycnal mixing term due to the neglect
of the divergence of the Eulerian mean velocity. MG were rather horrified to imagine
that the conservation equations that we use in oceanography could be in error by 30%
due to the Boussinesq approximation and they advanced the following (false) argument
which has since been debunked by Davis (1994, see his section 3e). MG noted that the
advective form of the scalar conservation equations does not contain a term involving the
divergence of the Eulerian mean velocity, V-, and suggested that so long as V-u = 0 is
rigorously enforced, then the erroneous divergence forms of the conservation statements

would reduce to the correct advective forms and so all would be well. In short, MG



were saying that two wrongs (the false assertion that V -@ = 0 in two separate places)
would cancel each other. Davis (1994) pointed out that if accurate observations of the
horizontal Eulerian-mean velocity were available everywhere, and if the flux form of the
averaged Boussinesq tracer equation were vertically integrated over a region bounded by
an isoline of the tracer in order to deduce the diapycnal property flux, then the missing
term would lead to a mis-estimation of the diapycnal property flux that is as large as
that expected with canonical values of the diapycnal diffusion coefficient. This argument
of Davis (1994) is the same point that is made above, namely that the term involving
V -1 is of the same order (MG say at least 30%) as the diapycnal mixing term in the
averaged conservation equations. The argument of Davis (1994) is correct as it stands
and MG must stand corrected:- the two wrongs that they identified do not make a right.
In this note, we reexamine the important issue of the averaged conservation

equations as they apply to the ocean, and, in particular, the accuracy of the equations
solved by currently existing ocean models, which commonly include the Boussinesq
approximation. Following a review of the Boussinesq approximation in Section 2, we
revisit the issue raised by MG in Section 3, but this time concentrate on the effect of
using a divergence-free velocity, such as carried by Boussinesq models, to advect the
averaged tracer field. If, as is traditional, one assumes that the horizontal momentum
equations of an ocean model are prognostic equations for the Eulerian-mean (that is
Reynolds averaged) horizontal velocity, the method of Lu (2001) can be used to confirm
that the model’s tracer conservation equation is indeed in error by an amount equivalent
to the magnitude of the diapycnal mixing term, but now, in contrast to MG, the error
is independent of any constant offset of the tracer. We note that the relative magnitude
of the error is enhanced by the large cancellation between the horizontal and vertical
advection terms in the model’s tracer equation on sloping isopycnal surfaces, leaving a
much smaller advection (of Boussinesq magnitude with the conventional interpretation

of the model’s variables) to balance the diapycnal mixing. We then go further in Section



4 and suggest a complete reinterpretation of the velocity variable carried by models.
In Section 5, we show that with the new interpretation of the velocity variable, the
conservation equations carried by Boussinesq ocean models are almost identical to their
non-Boussinesq counterparts in steady state, with the implication that Boussinesq
ocean models are actually much more accurate than had hitherto been imagined. The
analysis 1s extended to the non-steady equations in Section 6. The new interpretation
of the velocity variable leads to a rather straightforward way of making an ocean model
fully non-Boussinesq, as is demonstrated in the follow-on paper by Greatbatch, Lu and

Cai(2001). Finally, Section 7 provides a summary and conclusions.

2. The governing equations

The instantaneous conservation equations for mass, for a conservative scalar, C,

and for momentum are

pe+ V- (pu) = 0, 1
(PC)e+ V- (puC) = V- (prcVC), (2)
(p)e + V- (pu) 4292 x (pu) = ~Vp—kgp+ V- (uVu) 4 SV w). (3)

The terminology here is standard, with g being the viscosity and k¢ 1s the molecular
diffusivity of property C. It should be noted that C is defined as the mass of tracer per
unit mass of fluid (Gill, 1982). C can also be interpreted as the potential temperature.

When the Boussinesq approximation is made, (1)-(3) are replaced by

Vou =~ 0, (4)
Ci+V-(uC) = V. (.kcVC), (5)
1 1
u+ V- (uu)+2Q2 xu =~ ——Vp— kgﬂ + —V - (pVu). (6)

The Boussinesq approximation is really composed of three separate approximations.

The first two approximations have long been discussed in the literature, for example by



Spiegel and Veronis (1960), and these two aspects of the Boussinesq approximation are
attributed to Boussinesq (1903). The third and potentially most damaging aspect of the
Boussinesq approximation has apparently only been realised and published as recently
as 1992 by MG.

In the first of the Boussinesq approximations the equation for the conservation
of mass, (1), is replaced by the equation for the conservation of volume, (4). The
conditions under which this approximation is valid are discussed in detail in Batchelor
(1967; Section 3.6), Gill (1982; Section 4.10), and Kundu (1990; Chapter 4).

The second part of the Boussinesq approximation involves replacing the density in
(2) and on the left hand side of (3) by a constant representative density, p,. In this
way the driving horizontal pressure gradient in (6) is thought to be in error by the
replacement of p~' with p,”'. In the ocean, the in situ density varies by no more than
5% and this is the level of approximation associated with this second aspect of the
Boussinesq approximation so that traditionally the Boussinesq approximation is thought
to cause an error of at most 5% in the velocity vector.

The anelastic approximation (Ogura and Phillips, 1962) is a method for reducing
the magnitude of the error associated with the Boussinesq approximation. In the
anelastic approximation, the in-situ density on the left-hand side of the conservation
equations, (1)-(3), is replaced by a function of pressure (or depth) so that most of
the effects of the fluid’s compressibility are included. While this would be a distinct
improvement over the standard Boussinesq interpretation of the present Boussinesq
model equations, it does require substantial modification to the Boussinesq model code.
We do not pursue this further because we manage to derive a 100% accurate set of
averaged equations that is easier to implement in an ocean model than is the anelastic
approximation.

It seems that, prior to the work of MG, all discussions of the Boussinesq

approximation have failed to consider the effect of using a divergence free velocity as



the advective velocity in the tracer and momentum equations. MG considered the
divergence form of the averaged conservation equations, and pointed out that the term
associated with the divergence of the Eulerian mean velocity can easily be as large as
the diapycnal mixing term. In this paper we will show that the solution to this serious
conundrum raised by MG and Davis (1994) is to reinterpret the horizontal “velocity”
carried by Boussinesq ocean models as the average horizontal mass flux per unit area
normalised by p,. This reinterpretation of what is normally called the “velocity” in
Boussinesq ocean models overcomes all three aspects of the Boussinesq approximation
in the situation where the flow is steady and geostrophic. In this way we will show that
the so-called Boussinesq ocean models have always been more accurate than we had a
right to expect:- all we must do is to stop referring to the model “velocity” and instead
realise that it is proportional to the average mass flux per unit area.

Another approximation commonly made in ocean models is to replace the real
equation of state, p = p(5,6,p), with p = p(S, 8, pres), where S and 8 are the salinity
and potential temperature carried by the model and p,.; is a reference pressure that
depends only on depth. In this way, most of the dependence of density on pressure
is taken into account. Dewar et al. (1998) have argued, nevertheless, that using this
simplified equation of state leads to significant error and that the full equation of state
should be used to compute density for use in the hydrostatic equation. We return to

this issue in Section 5.

3. The Boussinesq Conundrum

We now revisit the concern raised by MG that arises in applying the Boussinesq
approximation to the averaged tracer conservation equation. We derive this result by

first writing the equations (1)- (3) in the advective form



Veu = —p7H(pr+u-Vp), (7)
Ci+u-VC = p7 'V (prcV0) = de, (8)
wt+u-Vu+22 xu = —p 'Vp—kg+d,. (9)

The molecular viscosity terms in (9) are given by dy = p™'V - (uVu) + Lp™'V(uV - u).
Following MG and Davis (1994) these instantaneous equations are ensemble averaged
(or temporally averaged with a long averaging time) finding (still without any

approximations whatsoever)

Vu = —p (p+u-Vp)—p V-(up), (10)
Ci+u-VC = do— V- (uC)+C'V -1, (11)
0+u-Va+2Qxu = —p-'Vp—kg+d,— V- (uu)+uV- u. (12)

The so-called “incompressibility” condition is the assumption that the right-hand side of
(10) can be ignored compared with the individual components of V - @ such as w,. The
classic Boussinesq approximation replaces —p=1Vp in (12) with —p,~'Vyp — 57 'p.k
and ignores the last terms in (11) and (12). It is usually thought this involves say a 5%
error in the horizontal pressure gradient term in the deep ocean. Note that while the
classic Boussinesq approximation replaces in-situ density with the reference density in
the instantaneous tracer equation, (2), in our Reynolds-averaged tracer equation, (11),
this is equivalent to ignoring the C'V - u’ term on the right-hand side. All these changes
are commonly referred to as the Boussinesq approximation.

In the appendix we confirm MG’s results that (i), the average of the molecular
diffusion term, d¢, holds no surprises and so can either be ignored or absorbed into the
turbulent mixing term, and that, (i), C'V - u’ is small enough to be ignored. Hence

(11) reduces to the regular advective form of a conservation statement, namely

Ci+u-VC=-V-(ul). (13)
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This seems to confirm the accuracy of the tracer equation in the Boussinesq model
equations (we dispute this below). MG, nevertheless, showed that the divergence form
of the Boussinesq tracer equation is in error by as much as the diapycnal mixing term
in that equation. Diapycnal mixing is known to be an important and often dominant
physical process in the deep ocean. MG’s analysis showed that if we knew exactly the
Eulerian-mean velocity, @, and used this velocity to evaluate the tracer budget using the
divergence form of the Boussinesq tracer equation, then serious error would result. This
point is also made by Davis(1994).

This causes us to now question the traditional interpretation of the velocity in
ocean models as being the Eulerian-mean velocity, because we do not want to believe
that Boussinesq ocean models are so seriously in error as to be incapable of representing
the diapycnal advective-diffusive balance. We now use the method of Lu (2001) to
examine more closely the error involved in a Boussinesq ocean model when we make
the usual (but we now believe incorrect) assumption that the horizontal momentum
equations are prognostic equations for the Eulerian-mean horizontal velocity. The
model’s velocity vector is therefore defined as @ = @ + dwk, where here (in contrast to
Lu) u is the Eulerian mean velocity. The model’s vertical velocity is different from the
Eulerian mean because of the requirement that the model’s three-dimensional velocity
field be divergence free. dwk is therefore chosen, following Lu(2001), so that V-a =10

everywhere and dw = 0 at the ocean bottom so that
ow = —/ V -wdz. (14)
—h

Writing (13) in terms of the model’s velocity, W, (ignoring dc and C'V - u’) we obtain

oc . - 0OC . — — aC
E-I-U-VC'—E—I—V-[H ]——V-[uC]—I-MUg. (15)

It follows from (15) that the usual assumption that the horizontal velocity carried

by an ocean model is the Eulerian-mean horizontal velocity results in the error term
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dw C, in the tracer conservation statement in such a model. MG showed that the
dominant contribution to V-u comes from the compressible nature of seawater according
to

V.U~ —7(p, + 0 Vp) = gw/c’ (16)

where v is the adiabatic compressibility of seawater, equal to (pc?)™" where c is the
sound speed, and the right-hand side of (16) has been written using the hydrostatic
approximation. Assuming a typical mean vertical velocity, w, of 2 x 107¢ m s™!, gives
an estimate for V- @ of 107" s™'. Using a depth scale of 1000m this implies, from (14),
that dw ~ 1078 m s~!. Putting C = S (salinity), we estimate S, to be 107*>m~!. Hence
Sw S, has magnitude 107''s™!, and so is the same order of magnitude as the diapycnal
mixing term (assuming a diapycnal diffusivity of 107° m? s~'). This analysis of errors in
ocean models is more relevant than the one advanced by MG because it recognises that

the velocity variable carried by a Boussinesq ocean model is divergence free, and so is

It is important to realise that the extra source term, w C., that appears in (15) is
a leading order term that upsets the proper balance between diapycnal advection and
diapycnal diffusion in this equation. Davis(1994) emphasised that this missing term can
lead to a 100% mis-estimation of the diapycnal diffusivity in inverse studies of the ocean
circulation (assuming that the Eulerian mean velocity is available to the inversion).
The form of the term as we have written it, namely dw C., would seem to indicate that
the term is inherently advective in nature. This is not the case. As Davis showed, this
term could equally well be regarded as a non-conservative alteration to the diapycnal
diffusivity. (The fundamentally non-conservative nature of this term is apparent from
our analysis of the unsteady equations in Section 6, following equation (43).) We have
shown here that if one interprets the horizontal velocity as the Eulerian-mean velocity,
then this Boussinesq conundrum source, dw C., is far too large to ignore, amounting

to as much as the effects of diapycnal mixing. Unless we can find a way around this
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Boussinesq conundrum, we oceanographers have no right to use so-called Boussinesq
models for any application where diapycnal mixing is significant, for example, in climate
modelling.

It is also important to note that (15) has been written in equivalent advective
and divergence forms. It follows that the error identified by MG is not confined to the
divergence form of the conservation statement, but is also a feature of the advective
form. In particular, the use of the divergence free velocity u to advect tracer leads to an
error, represented by the dw C. term. If the advection velocity were the full Eulerian
mean velocity, u, then, (13) shows that there is then no serious error. The problem is
that in models, the advective velocity is not the Eulerian mean velocity, because, in
contrast to the Eulerian mean velocity, the model velocity is divergence free. It follows
that the third part of the Boussinesq approximation, identified originally by MG as
a problem with the divergence form of the averaged Boussinesq tracer equation, has
its counterpart when the equation is written in advective form, and arises because the
Boussinesq velocity is no longer the Eulerian mean velocity.

Since the dominant term in the divergence of the mean velocity is gw/c?, the
vertical velocity difference |dw| = |G — U] scales as gwh/c* (from (14)) where here &
is the vertical distance over which the vertical velocity remains correlated. One of the
terms on the left-hand side of (15) is w C. so the error term, dw C, as a fraction of
w C, is

(bw C.)/(w C.) ~ gh/c* ~ 0.01 (17)
where h has been taken to be 2000m and the sound speed 1500 m s~'. Hence one might
be tempted to conclude that the error term in (15) is no more than 1% of the other
terms in the equation. However, we know that the vertical and horizontal advection
terms on the left-hand side of (15) almost self-cancel, leaving a much smaller advection
that balances the divergence of the turbulent flux on the right. Hence the relevant

measure of the error term in (15) is the ratio of Jw C, to the diapycnal mixing term,
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that is

(6w C.)/(e T.) ~ (gh/c*)(w/[e) ~ 0.01(w/e) (18)

where € & x/h has the dimensions of velocity and will be referred to as the diapycnal
velocity, and  is the diapycnal diffusivity. The reason why the diapycnal advection and
diffusion terms are the relevant metrics with which to compare the neglected Boussinesq
terms is that these diapycnal advection and diffusion terms are two of the primary
terms representing real, physical processes in the conservation equation (the others
being isopycnal advection and diffusion). By contrast, the near cancellation between
horizontal and vertical advection in a Cartesian model says nothing about any physical
process at work in the ocean, but merely reflects the use of a Cartesian, as distinct from
isopycnal (or adiabatic), coordinate system.

Since the diapycnal velocity is expected to range between 107® m s~ and 10" m
s71, while the mean vertical velocity is typically 107 m s™!, it is clear that the ratio
(18) can often be as large as unity implying that the error term in the mean tracer
conservation equation due to the Boussinesq approximation is often as large as the
diapycnal mixing term in this equation. This error analysis demonstrates that it is
the smallness of the diapycnal velocity due to the layered, nearly adiabatic, nature of
the ocean that elevates the relative importance of the error involved in the Boussinesq
approximation. Regions of the ocean as large as the subtropical gyres have the mean
vertical velocity, @, of one sign and in these regions, the missing Boussinesq error term
n (15), Sw C., can be as large as the real effect of diapycnal mixing processes.

Here we summarise the work so far in order to provide context for what follows.
We began by introducing MG’s amazing result that the divergence form of the mean
tracer equation, based on the three-dimensional Eulerian-mean velocity, is in error by
as much as the magnitude of the diapycnal mixing term. MG clung to the hope that
with ocean models making the false assertion that V-@ = 0 in two separate places, they

may not suffer the full effect of this Boussinesq error. This false hope was debunked by
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Davis (1994) who demonstrated that the full strength of the Boussinesq error remained
after integrating the conservation equations over large ocean volumes, and he showed
that this error was as much as the effects of diapycnal mixing. In this section we have
used the method of Lu (2001) to focus on the error that the Boussinesq models contain
in their tracer equations, all the while using the common assumption that the model’s
horizontal velocity is the Eulerian-mean velocity. Again, the error is as large as the
diapycnal mixing term, and this is true in both the divergence and advective forms of
the model’s tracer equation. We describe these results as a conundrum because we really
do not believe that present Boussinesq ocean models actually contain this error, and yet
a solution to this puzzle has not emerged in the years from the publication of MG and
Davis (1994) to the present. In this paper we advance a solution to this conundrum:-
the horizontal velocity in ocean models (including in Boussinesq ocean models) is not,
and never was, the Eulerian-mean velocity but is actually proportional to the horizontal

mass flux per unit area.

4. Density-weighted averaging and the average mass flux

The new approach to be introduced here is based on the density-weighted
averaging of equations (1)-(3) in a fixed coordinate system. This method is also called
Favre-averaging after Favre (1965 a, b), and goes back at least to Hesselberg (1926). We
define

' =pu/p, C'=pC/p, W' =u—w and C"=C-C". (19)
where @ and C” are the density-weighted averages of velocity and tracer concentration,
and it follows that pu” = pC” = 0. Averaging the instantaneous conservation equations
(1)-(3) in this way leads to

p,+V-(pu’) =0, (20)

(C")+V - (5 W C°) = =V - (uC™) + V - (prcVO), (21)
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(PU)+V- (U u)+2Qx (pu’) = —Vﬁ—kgﬁ—v(W)W-(m)%wm)-
(22)

Noting that on the left-hand side of these equations, W” appears mostly in the form

of the product p U”, we are motivated to write (20)-(22) in terms of a modified mean

“velocity” vector
u= P ﬁp/loo = ,O_ll/po. (23)
u is simply a scaled version of the average mass flux per unit area, since p, is a constant

reference density, say 1030 kg m™. (20) - (22) then become

B/po)e + ¥ T =0, (24)
(LT, + V- (@T") =V (KVC), (25)
Po
- ,007 - = ]- — ﬁ ,007
©,+V-(Zuu)+2Q@xu=—-——Vp—-—kg—+ V.- (AV=u). (26)
1% Po Po P

Note that the molecular flux terms in (21) and (22) (involving k¢ and p ) have
been absorbed into the turbulent fluxes, and that the turbulent fluxes have been
parameterized using a Fickian approach, as is traditional (noting that the diffusion
tensors K and A may have both symmetric and antisymmetric parts).

These are the fully non-Boussinesq conservation equations, written in terms of
our new velocity variable which is proportional to the average mass flux per unit area.
The Boussinesq approximation consists of replacing p with p, everywhere except in
the vertical gravitational acceleration term. If we perform this Boussinesq replacement

procedure on (24) - (26), we obtain our version of the Boussinesq conservation equations,

V-ua=0, (27)
Cl+V-(@C’)~V-(KVC), (28)

_ _ _ 1 ) _
L4+V - @0)+22xa~-——Vi—kgl + V. (AVD). (29)

o Po
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Notice that these equations correspond exactly to the instantaneous Boussinesq
equations, (4) - (6), but here we interpret the variables (particularly the velocity) in a
special way to ensure, as we shall show, that (27)-(29) are much more accurate than the

average of (4)-(6).

5. The steady, geostrophic hydrostatic equations are fully
non-Boussinesq

We begin by noting that if the mean fields are in a steady state (that is if 5, and C}
are zero), the fully non-Boussinesq continuity and tracer equations (i.e. (24) and (25),
respectively) can be written very simply as V-@ = 0 and V- (0 C*) = V- (KVC”).
These conservation equations are exactly the ones used by numerical ocean models, and
contrary to common assumption, there are no error terms here of up to 5 % magnitude,
as normally associated with the Boussinesq approximation, nor are there errors of order
30 % or more, as implied by MG. Furthermore, under the geostrophic and hydrostatic
balance, the momentum equation also holds without error. In summary, when the ocean
is statistically steady, geostrophic and hydrostatic, the continuity, tracer and momentum
equations are, without any Boussinesq error,

__ _ _ 1
=0; V-(0C’)=V-(KVC’); 2Q xuy=——Vyp; and p, = —gp (30)

o

=

AVAE

where iy is the horizontal component of @ and Vj is the horizontal gradient operator.
This implies that, subject to the geostrophic restriction, when the present generation of
hydrostatic ocean models reach a steady state, they are in fact fully non-Boussinesq and
so do not suffer the errors of 5 % or more associated with the Boussinesq approximation.

We wish to emphasize that the equations in (30) have been derived without the need
to make the Boussinesq approximation and yet they are exactly the same conservation
equations as are used in Boussinesq numerical models of the ocean circulation. Certainly

it appears that the Boussinesq approximation has been made in (30) because (i) p is not
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present inside the divergence terms V - @ and V - (1 C”), and (ii) there is a constant

reference density in the —Vgp/p, term. However we have avoided having to make the
Boussinesq approximation by redefining the velocity vector as being the average mass
flux per unit area (and then dividing by p, to give it the dimensions of velocity).

There are two remarks that need to be made in regard to the hydrostatic balance
in (30), p, = —gp, and these remarks remain pertinent in the more general situation
where the flow is unsteady and the momentum equation is not simply taken to be the
geostrophic balance. The first remark is the point made by Dewar et al. (1998) that p
should be allowed to respond to the changing pressure at fixed depth. While the past
practice in this regard is not actually part of a Boussinesq approximation (since the
appearance of the in situ density in the vertical momentum equation is the only place in
the Boussinesq approximation procedure where the in situ density is not replaced by p,)
it has led to errors of similar magnitude to that usually associated with the Boussinesq
approximation.

The second remark relates to our ability to evaluate p given the fact that the model
is assumed to carry the density-weighted salinity and potential temperature, S and §”.
In hydrostatic ocean models, the hydrostatic equation is vertically integrated to yield
the pressure whose horizontal gradient appears in the horizontal momentum equations.
An estimate of the error due to our inability to exactly determine p can be gained by
examining the thermal wind equation which can be found from (30), namely,

20 x (fiy). = piva. (31)
Here one needs the horizontal gradient of p, and with a linear equation of state, this
can be obtained from a knowledge of S and 8 because Vyp = Vgp(S,0,p). Before
commenting on the influence of the non-linear nature of the equation of state, we
need to consider the fact that the model variables are §” and 8” rather than being

the Eulerian-mean salinity and potential temperature. The difference between these
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salinities and potential temperatures makes the following difference to the horizontal

density gradient,
VHIO(§p7§p7]3) - VHP(§7 gv 13) ~ pO(ﬁvH[gl] - ?] - Osz[gp - _])

v [

2

This error in estimating the horizontal gradient of in-situ density is only 0.1 % of a
typical horizontal density gradient, and when integrating the thermal wind equation over
the whole water column, with Vg [W} being estimated using a density variation at a
fixed location of 0.15 kg m™ varying horizontally by its own magnitude in a distance
of 10® m, the error in the horizontal velocity is only 107 m s™!. This shows that the
difference between Vp(S”,8",5) and Vyp(S,8,7) is of no significant consequence.
The nonlinear nature of the equation of state of seawater is a separate reason why
a model cannot exactly determine Vgp. Following McDougall and MclIntosh (1996),
the difference between VHp(g, 9, p) and Vgp is of order —%pOVH {%W} where g—‘;‘
is the variation of the thermal expansion coefficient with potential temperature. This
contribution to Vgp is estimated to be two orders of magnitude larger than the estimate
obtained from (32). As such, this effect can cause an error in the horizontal velocity of
order 1073 m s™'. An error of this magnitude would not be trivial in an ocean model if
it was a persistent error (for example if an error of this magnitude occurred all the way
along a zonal average). However this error enters as a horizontal divergence and so it
does not lead to any persistent effects. This error in determining Vgp and Vgp has been
present in all ocean modeling to date and it has never been recognized as a problem.
Neither can we envisage that this effect will cause significant inaccuracies and so we
recommend that the Eulerian-mean density, p, that appears in the vertical component
of the momentum equation in (26), can be evaluated using the model variables and the

equation of state as p(S”,8",p).
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6. The unsteady equations

The full continuity equation, (24), contains the temporal derivative of mean in-situ
density in the term (p/p,):, which, in unsteady situations, is non-zero. If, as an example,
we assume a warming or cooling at the rate of 1 °C in 30 years, and that the density

change is dominated by the temperature change, then
V= —(p/po) =2 x107Ps". (33)

This is fifty times smaller than the estimate for the divergence of the Eulerian mean
velocity of 107! s71 given by MG. On the other hand, on the seasonal time scale, if
we assume that temperature changes by 10°C in 100 days, and that the density change
is again dominated by the temperature change, we obtain (p/p,): ~ 107'%~*. For
mesoscale eddies, we estimate (p/p,): & 107?s™!. Both these values are considerably
bigger than MG’s estimate for V - W and raise a question concerning the accuracy of
the unsteady Boussinesq equations (27)-(29) in comparison with their non-Boussinesq
counterparts (24)-(26).

To address this issue, we again use a technique based on the method of Lu(2001).

We begin by noting that the continuity equation is
(/pe) + ¥ =0, (34)
We now define a new velocity variable by
u=u+dwk (35)

and choose dw so that V- @ = 0 everywhere, and dw = 0 at the ocean bottom. (Note

that @ in (35) is different from w in (15).) It follows that this time

z 0 ﬁ
511) = /_ha E]dZ (36)

Let us consider what happens when (p/p,): is governed primarily by advective

processes, as we expect to be the case in eddy-resolving models. It can then be
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shown that dw/w is of order Ap/p, ~ a few %, implying that to the same level of
approximation, (24) can be replaced by (27), despite the seemingly large estimate for
the magnitude of (p/p,): noted above. For example, if vertical advection is dominant,

as in linear dynamics, then
(P/po)e = ©p./ po; (37)
and a simple scale analysis using (36) shows that

. Hp, A
dw/w ~ Pz 2P, (38)
Po Po

We now turn to the tracer equation (25) and note that the momentum equation can

be treated similarly. Writing (25) in terms of the divergence free velocity @, we obtain

v @er) = (L= Pgr, y A6w)

+ V- (KVC"). (39)
Po 0z

Using the continuity equation, (34), this can be written as

(Up — CR)t + V- (ﬁ (Up — CR))

- (P - o) + AC=E g geve.

where Cp is a constant, reference value of C”. We now follow Davis(1994) and vertically
integrate (40) from the bottom, z = —h, to the (time-varying) height of the iso-surface
C” = Cp of the tracer C”. Since §w = 0 at the bottom, and since C” = Cg at the top of
the range of integration, it follows that the penultimate term in (40) integrates to zero

and the equation becomes

«(Cr) _, (%) o
/ (T~ Cr) dz) + V- / @ (C° — Cp) do
—h ‘ —h

- ( /_ o M(?” —CR) dz) + / e (KVC”) dz,  (41)

h Po —h
where Vy is the horizontal gradient operator and we have used the fact that iy = gy,

the subscript H denoting “horizontal component”. The Boussinesq equivalent of this
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equation can be deduced from (28) and is

( /_ Z:CR)(@’ — Chr) dz) T v ( /_ Z:) ix (C° - Cr) dz)

t

Z(CR) .
~ / V- (KVC) dz.  (42)
—h

To make our point, we assume for simplicity that we have a linear equation of
state and regard C as potential density, although this assumption is not essential

to our argument. We now note that the diapycnal flux of tracer across the surface
C” = CRr due to diapycnal mixing is obtained from ffglCR) V - (KVC”) dz in both
Boussinesq and non-Boussinesq versions. Further, the Boussinesq version differs from
the non-Boussinesq version only by the first term on the right hand side of (41). In
particular, there is no contribution to the Boussinesq error from dw. Furthermore,
the Boussinesq error appears as a local time derivative, and hence, averages to zero
under long time-averaging. It follows that there is no systematic error in the diapycnal
transport of tracer from the Boussinesq approximation. We stress, however, that this
result has been obtained using our interpretation of the variables in the Boussinesq
tracer equation, as written in (28). In particular, the horizontal velocity variable is
interpreted as the horizontal component of @1, not as the horizontal component of the
Eulerian mean velocity @ (the vertical velocity being determined from the assumption
of divergence-free flow).

The importance of interpreting the horizontal velocity variable as iy can be
understood by applying the same analysis to (15), in which the horizontal velocity
variable is interpreted as the Eulerian mean horizontal velocity, Ty. In this case, the
equivalent of (41) is

([ e

t

Z(CR) .
+VH-</_ ﬁH(C’—CR)dz)
aC

h
Z(CR) _ Z(CR)
= [V (&VO) dz + | Swds (43)
—h —h

z

where the vertical integral is between the ocean bottom, z = —h, and the time-varying
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surface C = Cgr. The Boussinesq correction term now appears in terms of §w, but
unlike in (41), it is present in the vertically integrated equation, and does not average to
zero under long time averaging, implying the possibility of systematic error in this case.
Indeed, we believe systematic error is present since there are parts of the ocean (e.g. the
interior of the subtropical and subpolar gyres, or in the equatorial region) where both
Sw and C, are persistently of one sign. (Note that §w is given here by (14), and that
V -1 is dominated by the contribution from the mean vertical velocity, w, as discussed
following (16).) It follows that in such regions, the error term ffglCR) 5wgdz does not
average to zero under long time averaging and will result in systematic error.

Finally in this section, we note that there are only four locations where the
factor p/p, (or its reciprocal) needs to be added to the Boussinesq conservation
equations (27)-(29) to make them fully non-Boussinesq. It follows that it should be
relatively simple to modify existing Boussinesq code to make it fully non-Boussinesq,
as demonstrated by Greatbatch et al. (2001) in the case of the POP model (POP is
“Parallel Ocean Program”, the parallel version of the GFDL ocean model developed
at Los Alamos). Greatbatch et al. describe the detailed changes that are needed to
the model numerics as well as some results that illustrate the benefits of having a
fully non-Boussinesq model. As shown in that paper, the overhead in additional cpu

requirement is modest in the case of POP.

7. Conclusions

McDougall and Garrett (1992) and Davis (1994) warned that the use of the
Boussinesq approximation can lead to errors in the averaged tracer conservation
equation that are the same order as the diapycnal mixing term. This warning was based
on interpreting the velocity as the Reynolds- or Eulerian-averaged velocity. In section
3 we extended their analysis to specifically apply to the present generation of so-called

Boussinesq ocean models in which the model velocity is required to be divergence free.
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We noted that the relative magnitude of the error is enhanced by the large cancellation
between the horizontal and vertical advection terms in the model’s tracer equation on
sloping isopycnal surfaces, leaving a much smaller advection (of Boussinesq magnitude
with the conventional interpretation of the model’s variables) to balance the diapycnal
mixing. This served to confirm the serious conundrum which has plagued our field
since 1992. On the face of it, the Boussinesq conundrum means that we oceanographers
cannot use Boussinesq models for any application in which diaycnal mixing is important,
for example for climate studies. While for the past nine years we have thought it
very unlikely that all Boussinesq ocean models have been in error by as much as the
magnitude of the diapycnal mixing term, a solution to this conundrum has not been
proposed until now.

In the present paper we show that the vector we call “velocity” in an ocean
model is not, and never was, the fluid velocity. Rather the horizontal velocity is (and
always was) proportional to the horizontal mass flux per unit area. By interpreting
the model horizontal “velocity” in this fashion, the large error disappears from the
model’s tracer equation and the conundrum is overcome. When present so-called
Boussinesq ocean models achieve a steady state, we have shown that they are almost
completely non-Boussinesq. We also showed that with the above interpretation of the
model horizontal “velocity”, the unsteady equations carried by Boussinesq ocean models
contain no systematic error in the diapycnal advective/diffusive balance due to the
Boussinesq approximation.

The emphasis we have placed on the interpretation of the horizontal velocity
vector carried by Boussinesq ocean models is motivated by the procedure adopted in
hydrostatic ocean models where the vertical velocity is diagnosed from the horizontal
velocity using the requirement that the three-dimensional velocity vector be divergence
free. However, there is nothing in our analysis that restricts it to the hydrostatic

case. Non-hydrostatic models enforce the same zero-divergence of the velocity field,
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although the full vertical momentum equation is carried to compute the vertical velocity.
Hence, the same analyses of the Boussinesq error in the averaged tracer equations,
associated with neglecting the velocity divergence, applies to both the hydrostatic and
non-hydrostatic cases.

Throughout the analysis in Sections 5 and 6, we have interpreted the tracer variable
as the density-weighted averaged. It should be noted that similar conclusions apply if
the tracer variable is interpreted instead as the conventional Reynolds average (the effect
of doing this is to introduce some additional local time derivative terms such as (p'C’),
that drop out in steady state, and can be shown to be small in unsteady situations).
However, it is not possible to interpret the velocity variable in the conservation equations
of present ocean models as being the density-weighted velocity, w”, and arrive at the
conclusions we have done here regarding the accuracy of Boussinesq ocean models. This
is because the continuity equation of present ocean models does not carry p inside the
divergence term. To attempt this interpretation leads to errors of the full Boussinesq
magnitude (see Lu(2001)), which as Davis (1994) pointed out, can be as large as the
effect of diapycnal mixing on the tracer equation.

In a recent article, Dukowicz (2001) has introduced a stiffer (less compressible)
equation of state which has the effect of enabling a relatively accurate evaluation of the
pressure gradient term, p~!'Vp, in the horizontal momentum equation. Paradoxically,
this will lead to the entrenchment of the full Boussinesq conundrum error because
there is then no choice but to interpret the horizontal velocity vector in the horizontal
momentum equations as the Eulerian-mean horizontal velocity; it cannot be interpreted
as the horizontal mass flux per unit area. This is because, while the pressure gradient
term in the standard Boussinesq model, p;'Vgp, looks as though it suffers from the
standard Boussinesq error, our reinterpretation of the model’s velocity as the horizontal
mass flux per unit area shows that, in fact, it is without error (see equations (26) and

(29)). The implication is that modifying this term actually introduces error. Indeed,
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once we are forced to interpret the model’s horizontal velocity as the horizontal Eulerian
mean velocity, the non-divergence condition on the model’s three-dimensional velocity
vector then ensures that the model’s velocity will be w1 in the terminology of Section
3. The conservation equations (15) and (43) therefore apply, except that the models
do not contain the source terms §w C, whose neglect is associated with the Boussinesq
conundrum. A separate achievement of the Dukowicz (2001) approach was a reduction
in the transport errors identified by Dewar et al.(1998) due to models using an equation
of state that is a function of height rather than of pressure. Recently, Griffies et
al.(2000a) have shown that this issue can be overcome by simply using the pressure in
the call to the equation of state from the previous time step of the model and this is
now the default option in the MOM code.

The accurate conservation equations that need to be carried by a fully non-
Boussinesq ocean model are given by (24)-(26). There are only four locations where
the factor p/p, (or its reciprocal) needs to be added to the Boussinesq conservation
equations (27)-(29) to make them fully non-Boussinesq, and the most important of
these is in the continuity equation, (24). Greatbatch et al. (2001) have modified the
code of an existing Boussinesq ocean model to make it fully non-Boussinesq, and
integrate the hydrostatic version of (24)-(26), and they describe the detailed changes
that are needed to the model numerics as well as some results that illustrate the
benefits of having a fully non-Boussinesq model. In particular, with a non-Boussinesq
model it is possible to make direct comparison between the sea surface height and/or
bottom pressure computed by the model, without the need to correct, as with a
Boussinesq model, for the fact the model conserves volume rather than mass (e.g.
Greatbatch(1994)). Likewise, concern over the averaged tracer equations, such as raised
by MG, is automatically eliminated. However, it is important to appreciate that the
Boussinesq/non-Boussinesq model intercomparisons shown in that paper are not able

to throw light on the Boussinesq conundrum addressed here. This is because the error
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associated with the Boussinesq conundrum is of the same order of magnitude as the
diapycnal mixing term, implying, in turn, that great care would be required to ensure
that there is no spurious diapycnal mixing arising from the model numerics (Griffies
et al., 2000b). Since a fully eddy-resolving calculation would be required (because the
Boussinesq conundrum applies to averaged equations), demonstrating the Boussinesq
conundrum is a particularly stringent test of a model (Griffies et al., 2000b), beyond the
scope of the relatively simple model experiments described in Greatbatch et al.(2001).
Finally, we believe that the conundrum raised by MG and Davis(1994) points to
the conclusion that the Boussinesq approximation consists of three parts, not two, as
traditionally assumed. In addition to replacing (i) the equation for conservation of mass
by the equation for conservation of volume and (ii) the density that appears in the
temporal and advection operators by a constant reference density, it is important to
also consider (iii) the error in the tracer equation resulting from using a divergence free
velocity as the advecting velocity. As our analysis following equation (15) points out, it
is this error that is at the heart of the conundrum raised by MG and Davis(1994). As
far as we are aware, this third part to the Boussinesq approximation has not previously

been pointed out explicitly, although it is implicit in the work of MG and Davis.
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Appendix
The average of the molecular diffusion term

The molecular diffusion in the tracer equation, (8), can be written
de = p7'V - (prcVC) =V - (kcVC) + eV - (p7'Vp) (44)
and if we consider the tracer potential temperature, then the last term in (44) scales as
kgVO - (p'Vp) = —keaVh - V8. (45)

When averaged, this becomes

—kgaV - VO — Z—zﬁgvy . V(QTZ) — /igavg - V4. (46)

The first term here scales as —%EW - VO which is smaller than the turbulent flux
divergence term in (11), —V - (u’d’), by three orders of magnitude. Taking V(87?) to be
given by the square of 3 degrees C over a distance of 100m, the second term in (46) is
five orders of magnitude less that the dominant terms in (11). The third term in (46)
is also five orders of magnitude less than the dominant terms in (11). We conclude, in

agreement with McDougall and Garrett (1992), that to an excellent approximation,
do =V - (kcVO) (47)

and further, in (11), can be absorbed into the turbulent mixing term without incurring
significant error.
The magnitude of C'V -’

Using the functional form for the equation of state, p = p(5, 6, p), to find expressions
for p~'p; and p~'Vp in terms of the gradients of salinity, potential temperature and
pressure, and using (7) and two versions of (8) (one for salinity and one for potential
temperature), an expression for the instantaneous velocity divergence, V - u, is obtained

which we can use to find

C'V - =gc, wC +aryC'V- (V) —BrsC'V - (VS). (48)
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Here ¢, is the speed of sound in seawater. The first term here can be estimated (say for

2

the tracer potential temperature) using an eddy diffusivity of 107° m? s™! operating on

a vertical potential temperature gradient of 1072 K m™' giving g ¢, w'C’ = 10712 K
s~ which is two orders of magnitude smaller than the diapycnal advection and diffusion
terms in the conservation equation of potential temperature. The second term and third
terms in (48) can be estimated by noting (again for the tracer potential temperature)
that afigm = aligm — akgVH -V and the divergence term can be
ignored. The remaining term scales as %EW- V8 and this is no more than 107!3 K
s~1 which is three orders of magnitude less than the effects of diapycnal mixing in the

potential temperature equation. See Davis (1994) for further discussion of this C'V - u’

term.



29

References

Batchelor, G. K, 1967: An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge, 615pp.

Boussinesq, J., 1903: Théorie analytique de la chaleur, Vol.2, Gauthier-Villars, Paris,
657pp.

Davis, R. E.; 1994: Diapycnal mixing in the ocean: Equations for large-scale budgets.
J. Phys. Oceanogr., 24, 777-800.

Dewar, W. K., Y. Hsueh, T. J. McDougall and D. Yuan, 1998: Calculation of pressure
in ocean simulations. J. Phys. Oceanogr., 28, 577-588.

Dukowicz, J.K., 2001: Reduction of density and pressure gradient errors in ocean
simulations. J. Phys. Oceanogr., 31, 1915-1921.

Favre A., 1965a: Equations des gaz turbulents compressibles I.- Forms générals. Journal
de Méchanique, 4, 361-390.

Favre, A., 1965b: Equations des gaz turbulents compressibles II.- Méthode des
vitesses moyennes; méthode des vitesses macroscopiques pondér ees par la masse
volumique. Journal de Méchanique, 4, 391-421.

Gill, A. E., 1982: Atmosphere-Ocean Dynamics, Academic Press. 662pp.

Greatbatch, R. J., 1994: A note on the representation of steric sea level in models that
conserve volume rather than mass. J. Geophys. Res., 99, 12.767-12,771.

Greatbatch, R. J.,; Y. Lu and Y. Cai, 2001: Relaxing the Boussinesq approximation in
ocean circulation models. J. Atmos. Oceanic Technol., in press.

Griffies, S.M., C. Boning, F.O. Bryan, E.P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst,
A -M. Treguier and D. Webb, 2000a: Developments in ocean climate modelling.
Ocean Modelling, 2, 123-192

Griffies, S.M., R.C. Pacanowski and R.W. Hallberg, 2000b: Spurious Diapycnal Mixing
Associated with Advection in a z-Coordinate Ocean Model. Mon. Wea. Rev..

128, 538-564.



30

Hesselberg, T., 1926: Die Gesetze der ausgeglichenen atmospharischen Bewegungen,
Beitr. Physik der freien Atmosphare, 12, 141-160.

Kundu, P., 1990: Fluid Mechanics, Academic Press, New York, 638pp.

Lu, Y., 2001: Including non-Boussinesq effects in Boussinesq ocean circulation models.
J. Phys. Oceanogr., 31, 1616-1622..

McDougall, T. J. and C. J. R. Garrett, 1992: Scalar conservation equations in a
turbulent ocean. Deep-Sea Res., 39, 1953-1966.

McDougall, T. J. and P. C. McIntosh, 1996: The temporal-residual-mean velocity:
I Derivation and the scalar conservation equations. J. Phys. Oceanogr., 26,
2653-2665.

Ogura, Y. and N. A, Phillips, 1962: Scale analysis and shallow convection in the
atmosphere. J. Atmos. Sci., 19, 173-179.

Spiegel, E. A. and G. Veronis, 1960: On the Boussinesq approximation for a compressible
fluid. Astrophys. J., 131, 442-447.

This manuscript was prepared with the AGU IATEX macros v3.1.



