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Abstract.

A framework for mesoscale eddy parameterization based on density-weighted
averaging at fixed height is developed. The method uses the fully non-Boussinesq
equations of motion, and is connected to the equations carried by Boussinesq ocean
models only after the averaged equations have been developed. The framework applies
to the continuity, tracer and momentum equations within a single formalism. Two
methods for applying parameterizations in ocean models are obtained. The first, based
on the tracer equation, corresponds to the approach commonly taken when including
eddy effects in ocean models. The second puts the forcing for the eddy-induced
transport into the averaged momentum equation where it appears as the divergence of
a generalized Eliassen-Palm flux.

It is then shown how to solve for the tracer transport velocity. The solutions form
a family closely related to the Temporal Residual Mean (TRM) velocity of McDougall
and McIntosh[1996], valid to O(a?), where a is perturbation amplitude. The analysis is
extended to obtain a family of exact solutions for the eddy-induced mass transport, valid
at any order in perturbation amplitude. It is also shown how to obtain a generalization
of the TRM to take account of diffusion and time dependence in the instantaneous
equations. The solution suggests that the tracer transport velocity could be different for
different tracers, depending primarily on the structure of the mean field. This conclusion
also applies in the case of isopycnal averaging; it is not a result that is peculiar to
averaging at fixed height.

Finally, it is shown how the non-Boussinesq analysis presented in the paper can be

modified to analyze output from eddy-resolving, Boussinesq ocean models.



1. Introduction

As parameterizations are developed for the transport of tracers by mesoscale eddies,
then so different ways of averaging the equations of motion are being considered. For
example, the widely used Gent and McWilliams[1990; hereafter GM90] parameterization
is often interpreted in terms of averaging on an isopycnal surface [Gent et al., 1995],
and other approaches to eddy parameterization have used thickness-weighted averaging
on an isopycnal surface [e.g. de Szoeke and Bennett[1993]; Dukowicz and Smith[1997];
Greatbatch[1998]; Dukowicz and Greatbatch[1999] and Smith[1999]]. While averaging
on an isopycnal surface has been justified on the grounds we believe mesoscale eddies
mix along isopycnal surfaces, measurements obtained from mooring arrays are generally
available at fixed height, rather than at fixed density, and averaging is commonly done
at fixed height. In addition, many ocean models, including the widely used MOM code
[Pacanowski and Griffies, 1999], use the height z as their vertical coordinate. There is
also the difficulty in the ocean of defining exactly what is meant by isopycnal averaging.
This is because the ocean is compressible (be it only weakly), and although progress
has been made by thinking in terms of “neutral density” [McDougall, 1987], problems
remain because “neutral density” cannot be defined globally, and an approximate
form must be used (e.g. Jackett and McDougall[1997], Eden and Willebrand[1999]).
There is, therefore, considerable motivation to develop an approach to mesoscale eddy
parameterization based on averaging at fixed height rather than averaging at fixed
density. Very little work has been done, however, to investigate averaging at fixed
height. McDougall and McIntosh[1996; hereafter MM] introduced the “Temporal
Residual Mean” (TRM) velocity using averaging at fixed height, but later modified
their approach to mimic isopycnal averaging [McDougall and McIntosh, 2001]. More
recently, McDougall, Greatbatch and Lu[2001; hereafter MGL] have suggested a method
of interpreting the variables in Boussinesq ocean models based on averaging at fixed

height, but questions remain as to how to connect their work to approaches for



parameterizing mesoscale eddies. This is especially problematic since all the most widely
known approaches to eddy parameterization in the ocean are based on the Boussinesq
equations of motion.

Here, we extend the analysis of MGL by showing, in Section 2, how an approach
to mesoscale eddy parameterization fits within their framework. The analysis is based
on the non-Boussinesq equations of motion and uses density-weighted averaging at fixed
height. Only after the basic framework has been set up within the non-Boussinesq
system, do we then show how the Boussinesq approximation can be applied to the
averaged equations of motion for use in Boussinesq ocean models. The analysis also
has the advantage that the continuity, tracer and momentum equations are treated
together within a single framework. In Section 3, we show how to solve for the tracer
transport velocity. The solutions form a family that are all related to the TRM velocity
introduced by MM. The original TRM solution is valid only to O(a?) in perturbation
amplitude. In Section 4, the analysis is extended to find an exact solution, valid at any
order in perturbation amplitude. The results suggest that the tracer transport velocity
may be different for different tracers, depending mostly on the structure of the mean
field. In Section 5, it is shown how the analysis in Sections 2, 3, and 4, all of which
is based on the non-Boussinesq equations of motion, can be applied to the analysis of
eddy-resolving, Boussinesq ocean models. Finally, Section 6 provides a summary and

conclusions.

2. The Governing Equations

We begin by writing down the instantaneous equations governing conservation

of mass, a conservative scalar, C, and momentum. Following Batchelor[1967] and

Gill[1982], these are

pr+ V- (pu) =0, (1)



(PC)e+ V- (puC) =V - (pkcVO), (2)
(pm)e + V- (p ww) 45 x (pw) = ~Vp—kgp+ V- (uVu) 4 V(¥ ). (3)

The terminology here is standard, with g being the viscosity and k¢ being the diffusivity
of tracer, C. f = flAi where k is a unit vector in the upwards vertical direction, and f is
the Coriolis parameter (for simplicity, we neglect the horizontal component of the earth’s
rotation vector). It should be noted that C is defined as the mass of tracer contained in
unit mass of fluid [Gill, 1982]. Throughout the following, C is usually either salinity or
potential temperature. In the case of potential temperature. the diffusion term strictly
requires modification from the form given in (2) (see Gill[1982], equation (4.4.7)), a
difference that i1s not important for the analysis here and will be ignored. It should also
be noted that McDougall and Jackett, unpublished manuscript, have argued that a more
accurate form of the heat equation is obtained using potential enthalpy, rather than
potential temperature as the prognostic variable. Apart from theses issues regarding
potential temperature, (1)-(3) are the fully non-Boussinesq equations of motion. None
of the analysis that follows depends on making the Boussinesq approximation.

We now consider what happens when the instantaneous equations are time-
averaged. Rather than use the normal Reynolds averaging, we use density-weighted, or

Favre-averaging at fixed height (after Favre[1965a,b]). We therefore define
w=pu/p, C"=pC/p, u,=u—-u" and C,=C-C". (4)

where W, C” are the density-weighted averages of velocity u and tracer concentration,
C, respectively, and E = 0 and pC) = 0. Averaging the instantaneous conservation

equations, (1) - (3), then leads to
ﬁt—l-V'(ﬁﬁp):O, (5>
7O+ V- (pwT”) = -V - (puCT) )

(P )+ V- (puw) +£ x (p ) = —Vp—kgp — V- (puju)) (7)



For simplicity, the molecular diffusion and viscosity terms have been neglected in
comparison with the turbulent correlation terms. Perhaps the major advantage of using
density-weighted averaging is that no turbulent correlation terms appear in the averaged
mass conservation equation (5), as appear with conventional Reynolds averaging.
Indeed, the form of (5)-(7) closely follows that of the instantaneous equations, (1)-(3).
The tracer transport velocity is the effective velocity by which time-averaged tracer
fields are advected [Plumb and Mahlman, 1987; Gent et al., 1995]. We shall begin by
assuming the tracer transport velocity is the same for all conservative tracers, and then
show, in Sections 3 and 4, how this assumption may require modification. By analogy

with Gent et al.[1995], we expect the tracer transport velocity u# to satisfy
P+ V- (put)=0, (8)

thereby ensuring conservation of mass by the transport velocity, u#. Comparing with

(5), it follows immediately that
V.l (ut —w) =0, 9

and hence that

put =50 +VxB (10)

where B is a three-dimensional vector field. (In this paper, the terminology “tracer
transport velocity” is used to refer to the total effective velocity by which mean tracer
fields are advected, i.e. u#, and the “eddy-induced transport velocity” to (u# — w*).
Similarly the “eddy-induced mass transport” refers to p(u# — u”).) We note that,

without loss of generality, we can always write B in the form
B = (A27_A170) (1]‘)

This is because we are interested only in the curl of B, and so the gradient of a scalar

field can always be added to B to obtain the form in (11). The two-dimensional vector



A = (A1, Ay) is then the vector streamfunction for the mass flux associated with V x B
in (10). The form of B given by (11) will prove useful in the later analysis.

Let us begin by considering the tracer equation (6). Using (10), this can be written
(PC")e + V - (pu*C") = =V - [pu/C’ — C"VxB| (12)

Since u# is the tracer transport velocity, it is usual to assume that the right hand side

of (12) can be parameterized in terms of a symmetric diffusion tensor K, so that
(PC")+V - (pu*C") =V - (p K V ") (13)

This is equivalent to adopting a Fickian diffusion parameterization for the flux of tracer
pw,C! in terms of an antisymmetric tensor associated with u# and a symmetric tensor
K. Written in terms of w”, (13) becomes
(pC") + V- (puC") =V - [ KV C” — C’VxB] (14)
We now follow MGL and introduce a new velocity variable
ﬁ = — =

u’ (15)

where p, is a representative density for sea water. (Note that u here corresponds to u

in MGL.) Writing (5), (14) and (7) in terms of a yields

(P/po)e + V-1 =0, (16)
_ o -
(LC" +V- (@ C) =~V 5KV - C’VxB] (17)
pO po
4V (P26) + f x i = ——Vp— kgL — 1V (pur) (1s)
ﬁ pO Po po pop

Following MGL, we note that making the Boussinesq approximation is equivalent to
replacing p everywhere by p,, except in the buoyancy forcing term in the vertical

momentum equation, in which case (16)-(18) reduce to

V-a=0, (19)



— — S — B
Cf+v-(ﬁcp):v-[chp—cﬂVX ] (20)
Po
N - . 1__ 51 _
W+ V-(ua)+fxa=-—-Vp-kg——-—V-(puu)) (21)

o Po Po

The hydrostatic version of (19)-(21) are the equations commonly integrated by
Boussinesq ocean models. It is usual to parameterize —pLOV : (,OTIJU;J) on the right hand
side of (21) as a Fickian diffusion of momentum, and to use the GM90 parameterization
to represent VIJLOB. In fact, GM90 can be obtained by putting A = (A, A) = /i,OOIA( X Vﬁ—fjﬁ
in (11), where & is the thickness diffusivity and Vp is the horizontal gradient operator.
In practice GM90 is implemented either by taking the VxB term to the left hand side of
(20), in which case it appears as an additional advective velocity (e.g. Danabasoglu and
McWilliams[1995]), or by incorporating it with the diffusion tensor K [Griffies, 1998].
In either case, K in (20) combines diapycnal mixing with the isopycnal mixing tensor
introduced by Redi[1982].

An alternative approach is to keep the tracer equation in the form (13) and write

the momentum and continuity equations in terms of u# to give
P+ V- (pu?)=0, (22)
(PC")+V - (pu?C") =V - (p KV ) (23)
(Pu’)+ V- (pu¥u’) +fx (pu*) = —Vp—kgp+f x (VxB)— V- [pulu, —ua’VxB] (24)

In writing the momentum equation, we have retained u” as the primary velocity variable
(apart from in the Coriolis term), but have used u# as the advective velocity, in keeping
with the continuity equation (22). This is because, as noted by Greatbatch, Lu and
Cai[2001], the kinetic energy is naturally defined in terms of @w”. However, if desired, it
is simple matter to use (10) to write the momentum equation entirely in terms of the
single velocity variable u#. The appearance of two different velocity variables in (24)
is, nevertheless, commonly the case when writing the averaged momentum equation

in a form to take account of the eddy forcing. It is a feature, for example, of the



Transformed Eulerian Mean under zonal averaging [Andrews et al., 1987], equation
(2.8a) in Tung[1986], and equations (54) and (55) in Greatbatch[1998].

We next note that writing B in terms of the vector streamfunction A, as in (11), we
can express the right hand side of (24) as the divergence of a generalized Eliassen-Palm

flux, analogous to that in Gent and MeWilliams[1996], i.e.
(P W)+ V- (pu?@) +f x (pu*) = ~Vp—kgp+ V- E (25)

where

E = —(pu,u, — @"VxB) + kf x A (26)

In (25), the term arising from A takes the form 22 indicating that f x A has the form

of a horizontally acting stress (in fact, this term corresponds to what Greatbatch[1998]

called the “eddy stress”). In the case of the GM90 parameterization, Q%XZA is the term

appearing on the right hand side of equation (23) in Gent et al.[1995], and corresponds
to the divergence of a vertical flux of geostrophic momentum.

Written in terms of u#, the continuity, tracer and momentum equations are

P+ V- (pu¥)=0, (27)
(PC") + V- (pu*C") =V - (F KV ) (28)
() + V- (pu*a”) +f x (pu*) = ~Vp—kgp + V- E (29)

To see what form these equations take when the Boussinesq approximation is applied,
we again follow MGL, expect that this time we define the new velocity variable in terms

of u# rather than uw”. We therefore define

u# =

—u# 30
,CO ( )

In terms of u#, (27)-(29) become

(5/pa)e +V - i# =0, (31)



10

_ B . B
(LC"), + V- (@*C”) = v 3KV ) (32)
P N s Lo P 1
(=), + V- () +fxu* =——Vp—kg—+ —V-E (33)
o Po Po Po

Making the Boussinesq approximation then reduces these equations to

V-a? =0, (34)
Cl+V-(a*C")=V-(KVC (35)
1 71
WAV (@) +fx it = ——Vp-k¢L + —V-E (36)
o po po

To implement (34)-(36) (or, more generally, (31)-(33)) in a numerical model, we
need to parameterize V - E; B (or equivalently, the vector streamfunction, A) and the
diffusivity tensor K. Knowing B, U and u# are related by (10) and (30). Likewise,
to implement (19)-(21) (or, more generally, (16)-(18)) in a numerical model we must
parameterize B, K, and —pl—OV . (m) on the right hand side of (21) and (18). As
noted earlier, the common approach is to work with the form (19)-(21); that is, to
parameterize the eddy-induced transport through the tracer equation. (34)-(36), on the
other hand, have the advantage of revealing how eddies influence the mean flow, and is

analogous to the approach advocated by Wardle and Marshall[2000].

3. The connection between the vector streamfunction A and
the TRM velocity of McDougall and McIntosh(1996)

In this section, we show how the vector streamfunction A for the eddy-induced
mass flux, and hence the vector B in (10), is related to the TRM velocity introduced
by MM. We work with a conservative tracer C, which, as before, could be potential
temperature or salinity. We note that MM choose C to be neutral density, and that
our analysis differs from MM in that we do not make the Boussinesq approximation.

Rather, we work with the fully non-Boussinesq governing equations.
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To begin, we assume there are no sources and sinks, and that we are in a statistically
steady state. The effect of adding diffusion to the right hand side of (2) will be discussed

later. The instantaneous equation governing C' is then
(pC) + V.(puC) =0 (37)

Density-weighted averaging leads, as before, to (6), which, in a statistically steady state
reduces to
V- (pu'C’) = =V - (pu,C}) (38)

We also have the eddy variance equation, the statistically steady version of which is

V(579 = —(uC)) - VO + O(cr) (39)
where ¢ = %C’I’)Z. The triple correlation term is shown as O(a?), where a measures
perturbation amplitude. (An exact solution, including the triple correlation, is derived
in Section 4.)

We shall begin by seeking the vector B such that the right hand side of (12) is zero.
Then, later, when we add diffusion to (37), we shall show that a solution can be found
for which K in (13) is non-zero. It follows that at this stage, the problem is reduced to
finding B such that

pu/,C7 — C"VxB =V x D (40)
where D is a “gauge” that enters because all we require is that the divergence on the

left hand of (12) be zero. We next note that (40) can be rewritten as
pu,C" =V x ©®+Bx VC” (41)
where
@ = (C’'B+D) (42)

Using (11) to write B in terms of A, and noting that, without loss of generality, we can

write

® = (,,—6,,0) (43)
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we obtain B
pu,Ch = (Z—f—aa—fA,—VH-T+A-vHU”) (44)

where
T = (6,,6,) (45)

Equating the horizontal components in (44), we obtain

1 0T 1

A
where v is the horizontal component of u.

(46) gives an expression for A. To complete the solution, we must now find a
solution for T, or, equivalently, ®. To do so, we first take the scalar product of VC”
with (41). The term on the far right hand side of (41) then drops out, and we are left
with

(pu/,C7) - VC" =V - (@ x VC") (47)

We now substitute for the left hand side of (47) from the eddy variance equation, (39),

and use (43) and (45) to obtain (dropping the triple correlation)

— ac” —
V(W) + (T T V4T =0 (48)
The general solution is
- ac” — IF
AT -T—,T- Y=(=,-Vg-F 4
779 + (100 VyT) = (O Yy F) (49)
where F is a two dimensional vector.
Let us seek a solution by putting F = 0. Then
_ ac” _
7 09) + (T T v, =0 (50)
Equating the horizontal components, we obtain
1~
T==(p"vV 9 (51)

C

z



13

Using (38), it is easy to show that with this choice for T, the vertical component of (50)
is also satisfied to O(a?), where, as before a measures perturbation amplitude. Since we
have already neglected terms of O(a?), it follows that (51) gives a consistent solution

for T to this order in «. Substituting back in (46), we obtain

- o3l B = i (52)
Apart from the factors of p that appear because we have used density-weighted
averaging, (52) is identical to the formula given by MM for the vector streamfunction
¥ associated with the Temporal Residual Mean velocity (cf. (52) with equation (11) in
MM). It follows that we have found a strong connection between the TRM introduced
by MM, and the eddy-induced mass transport associated with the eddies in (10) and
(14). It should also be noted that repeating the analysis leading to (52) with p = 1
throughout, and using Reynolds averaging instead of density-weighted averaging, gives
an alternative derivation for ¥ to that given by MM. Indeed, in the Boussinesq system
usually integrated by models (see Section 5), (52) corresponds to an eddy-induced

transport velocity with vector streamfunction, A#, given by

19,1, — 1

(52) is a special solution that was obtained by putting F = 0 in (49). For F # 0, we

can use the horizontal component of (49) to obtain an expression for T, as before, i.e.
= Levs- 2 (54)

and use the vertical component of (49) to place a consistency condition on F. Using

(38), the consistency condition, to O(a?) is
~F.-VuC’"+Vy-FCl =0 (55)

In other words, F is the vector streamfunction for a flux of eddy variance that must

lie in surfaces of C*. Any F satisfying this condition can be used to obtain a possible
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solution for T, and hence A. The lack of uniqueness implied by this result has already
been noted by MM who argue that the solution given by (52) is, nevertheless, the
physically relevant one.

Let us now seek a solution when diffusion is added to the right hand side of (37),
so that we now we work with (2). In a statistically steady state, the eddy variance

equation (39) becomes

V- (7 u¢) = —(pu,C) - VC' + kep{V(CIVC))" —VC,-NC'} + 0(e®)  (56)

The term V(CI’)VCI’))IJ is small in its effect compared to VC? - VC/ [McDougall and
Garrett, 1992] and will be dropped. We now seek a solution such that the right hand

side of (12) can be written as a diffusion, as in (13). Then (40) is replaced by
pu,C" — C"'VxB =V x D — pKVC” (57)

where K is a symmetric, positive definite diffusion tensor (in models, K combines
diapycnal mixing with the isopycnal diffusion tensor of Redi1982]). As in the previous

analysis, we write (57) as
pu,C" =V x ©+ B x VC" - pKVC” (58)

Taking the scalar product with VC” and using the eddy variance equation (56)
(dropping the V(C’I’)VCI’))I) term), we obtain

s v I e rals P — T ac” Yold 3

koplVC]-VCI'| =pVC"-KVC" = =V -{(pu’p) + (—Ta—, T-VrC)}+0(a”) (59)
z

We can find a solution by adopting a generalization of the flux decomposition
suggested by Marshall and Shutts[1982]. In particular, we associate the diffusive part
(PKVC”) of the flux pw,C7 in (58) with the local, irreversible, removal of tracer

variance, and the rotational part (V x @) with the advection of tracer variance, ¢.

Doing so puts the left hand side of (59) to zero so that

VC" - KVC" = kc[VC, - V] (60)
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Note that since K is positive definite, KC[W] must also be positive, as 1s indeed
the case. Since the right hand side of (59) must also be zero, we can choose T as
before (i.e. as in (51)). Note that, just as before, the choice of solution given by (51)
requires consistency in the sense that the vertical component of the vector inside the
V operator on the right hand side of (59) must also be zero. In a statistically steady
state, this condition is again satisfied to O(a*). (This result uses the steady version
of (6). Note that if the local time derivative term in (6) is not zero, the requirement
on the vertical component is satisfied only to O(a?), so reducing the accuracy of the
solution in this case). Finally, we note that although we have made a very special choice
of solution,, based on the flux decomposition of Marshall and Shutts[1982], Peterson
and Greatbatch[2001] have found evidence to support this decomposition in numerical
experiments using a layered model.

Putting these results together, and using (58), we finally obtain a modified solution

for A given by

1o 1,1
= ﬁa{ﬁ(ﬁ v o)} - W{PVLC,’) + (PKVC" )i} (61)

z

where “g” denotes “horizontal component”. Unfortunately (60) does not determine the

diffusivity K uniquely, so clearly additional equations are required to close the system.
Nevertheless, we have shown how a solution can be found, and its relation to both the
TRM of MM and the flux decomposition introduced by Marshall and Shutts[1982].
Finally in this section, we note that the approximate solution we have found for the
vector streamfunction, A, has been derived for a single tracer, C. A question naturally
arises as to whether the resulting eddy-induced transport represented by A is tracer
invariant, as we assumed in Section 2; in particular, is the eddy-induced transport
velocity the same for any tracer, C?7 We note that in addition to the appearance of k¢
(which is tracer dependent) in the expression for K in (60), the expression for A given in

(52), also depends on the details of the mean field, represented by C”, and the strength
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of the fluctuations, C). There is also the difficulty that (52) is only an approximate
solution, valid to O(a?), and it is not clear what happens at finite amplitude. With
these thoughts in mind, we now proceed to generalize the analysis in this section to find
an exact solution for the eddy-induced mass transport represented by the vector B in

(10), and hence for the Temporal Residual Mean velocity itself.

4. An exact solution for the TRM mass transport

Let us begin with the case in which k¢ = 0, so that the instantaneous tracer

equation is (37). As before, we seek vectors @ and B so satisfy (41), i.e.
pu/,C" =V x ®+ B x VC” (62)

Without loss of generality, we can seek a solution for B that has the property that

B - VC” = 0. This can be understood because in (62), B appears only in the form

B x VC” so that the component of B parallel to VC” plays no role. Another way to
look at this is that whereas previously (cf. (11)) we simplified B by putting the vertical
component to zero, here we can put the component parallel to VC” to zero. Taking
(62) x VC” then gives

1 _ -
B = Wvo” x {(pu,C!) — V x @} (63)

This is obviously similar in structure to (46). As before, the next step is to solve for ®.

Taking the scalar product of VC* with (62) leads, as before, to
(pu’,C7) - VC" =V - (@ x VC") (64)

We now substitute for (pu/,C?) - VC” from the eddy variance equation. However, to
obtain an exact solution, we need the exact form of that equation. In statistically steady

state, this is

V(W + pug) = —(pu,Cy) - VO (63)
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(Note that now we use the density-weighted average of ¢ in the (V - (7 @*¢”) term.)

Combining with (64) gives
V-(pud +pu,d+ 0 xVC") =0 (66)
This can be solved for @, again noting that we can put the component of @ in the

direction of VC” to zero, to obtain

1
e=- T |2VC’ x {p w¢" + puld+V x G} (67)

where G a “gauge” vector. In fact, the three-dimensional vector G corresponds to the
two dimensional vector F in (49), and the condition (55) corresponds to noting that the
component of V x G in the direction of VC” plays no role in the solution for ®. The

general solution for B is then
1
R Ve
Comparison with (52), which corresponds to putting G = 0, shows the obvious

———VC" x {(pu;)C’,’)) + V x [ VC’ x (pu’d” + puld + V x G)]} (68)

similarities. It is important to note that there is no restriction on the amplitude of the
fluctuations in (68). (68) is an exact solution to any order in perturbation amplitude.
The non-uniqueness of the solution, noted when discussing (52), is reflected by the
appearance of the V x G term.

The solution can be extended to include diffusion in the instantaneous tracer
equation by invoking the flux decomposition of Marshall and Shutts[1982] exactly as
before. Time dependence can also now be included without any loss of accuracy in
the solution. (62) is now replaced by (58), as before, and the eddy variance equation
becomes (dropping the Wﬂ term, as before)

7" )e+ V- (pud’ + puld) = —(pu,C7) - VC’ — kcpVC, - VC) (69)
Following the same flux decomposition as previously, the solution becomes

1 — S —
B = WVCPX{(,OU;C,’)) +PKVC’ + V x | —=—VC’ x (p 0’4" + pu,d + V x G)]}

(70)

1
el
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with
VC" - KVC" =p7' (p ") + kc[VC, - V'] (71)

Since K is positive definite, this time we require
P (7 &)+ rc[VC, VT 20 (72)

In a statistically steady state, this condition is satisfied, as before. The difference from
(60) is the inclusion to time dependence. If there is growth in eddy variance, (p ap)t > 0,
then clearly (72) is satisfied, as one would expect.

Let us examine the solution given by (70) in more detail. We note that to obtain
B, the diffusive part of the eddy flux (FKVC”), and the rotational part (given by the
VX term) are removed from the total eddy flux m, and the remainder projected
on to surfaces of uniform C”. The formula applies for a particular choice of tracer,
C, and, as noted at the end of Section 3, it is far from clear that the eddy-induced
transport velocity associated with B is tracer invariant. In the case of zonal averaging,
Plumb and Mahlman[1987] diagnosed the transport velocity in the vertical plane from
the GFDL general circulation/tracer model using two independent tracers with nonzero
and non-parallel mean gradients. The diagnosed tracer transport circulation is similar
to the residual mean circulation given by the Transformed Eulerian Mean [Andrew et
al., 1987], suggesting that tracer dependence may not be a serious problem in that case.
(Under zonal averaging, and for small perturbations about the zonal flow, Plumb and
Mahlman note that the transport velocity is indeed tracer invariant. However, it is not
clear that tracer invariance holds at large amplitude.) Nevertheless, particularly in the
ocean, where the potential temperature and salinity fields have very different mean
structures, and where the continental boundaries complicate the geometry, lack of tracer
invariance could be a problem, requiring careful numerical experimentation to sort out.
If B, and hence u# in (10), is not tracer invariant, then to write the governing equations

in the form of (31)-(33) or, in the Boussinesq case (34)-(36), will require the choice of a
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particular tracer to define u#, and then adjustment of each tracer equation to allow for
differences in the tracer transport velocity. This is clearly undesirable, and would favour
writing the equations in the form (16)-(18), or (19)-(21).

It should be noted that the problem of tracer dependence is not a peculiarity of
using density-weighted averaging at fixed height. In fact, the same solution procedure
can be used to solve for the eddy-induced transport velocity in the case of isopycnal
averaging. In that case, the problem is simpler, because it is in two dimensions. More
importantly, most of the effect of the eddies is contained in the thickness-weighted,

isopycnal averaged velocity, @ = % - see Eqn. (32) in Greatbatch[1998]. In the
formalism, @ plays the role of @” in (10), and a solution with B = 0 is acceptable in the
case of isopycnal averaging, as was, in fact, assumed in Gent et al.[1995], eqns. (6) and
(7). On the other hand, when using density-weighted averaging at fixed height, the flux
associated with B is an essential part of the effect of the eddies, and a solution with
B = 0 is not an acceptable one. This can be understood from the discussion following
equation (26), where we noted that the GM90 parameterization is a parameterization
for A, the vector streamfunction associated with B. Putting B = 0 actually amounts
to saying that the form drag effect of eddies, transferring momentum vertically, is not
important, and is unlikely to be the case, in general. It follows that the issue of tracer
dependence is probably more serious for the height averaging used in this paper than it

is for isopycnal averaging. Tracer dependence, nevertheless, remains an issue for further

investigation.

5. Application to the analysis of eddy-resolving, Boussinesq
ocean models

There is a strong need to analyze eddy-resolving model output in order to verify

ideas about eddy-parameterization (e.g. Lee et al.[1997], Killworth[1998], Marshall et
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al.[1999], Roberts and Marshall2000], Peterson and Greatbatch[2001]). Since almost all
eddy-resolving ocean model experiments are carried out using Boussinesq model codes,
it may not be immediately obvious how the analysis in this paper, which is carried out
using the non-Boussinesq governing equations, can be applied to the output from a
Boussinesq ocean model. In this section, we briefly describe the modifications to the
analysis that are required in the case of z-coordinate, Boussinesq ocean models such as
the MOM code. All the averaging is done at fixed height, as in the main part of the
paper. The analysis can also be modified to apply to the analysis of isopycnal coordinate
models, with the thickness (k) playing the role of density (p), although we do not discuss
this case further here. The equations integrated by a Boussinesq ocean model are (with
some possible differences in the dissipation terms), the Boussinesq version of (1)-(3)
in which p is replaced by the constant reference density, p,, everywhere except in the
gravitational acceleration term. Applying Reynolds averaging to the model equations

then leads to

V-a=0, (73)
Ci+V-(uC)=-V- () (74)
1 7 S
ﬁt+v-(ﬁﬁ)+f><ﬁ:——Vﬁ—kgﬁ—v-(u’u') (75)
o po

Here W is the Eulerian mean of the model’s instantaneous velocity. By analogy with (8),

we now require that the tracer transport velocity, u# satisfy
V-u? =0. (76)
u and u# are now related by (10) with  replaced by p,, i.e.

B
uwf =T+ Vx—. (77)
Po

The factor p, has been retained so that the vector B used here corresponds directly to

the vector B in Section 2. Introducing the diffusion tensor K, as before, we arrive at
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either (19)-(21) or (34)-(36), with @ replaced by W, and (pu’u’) replaced by p,(u'n’), i.e.

V.-a=0, (78)
Ut+v-(ﬁ6):v-[KvU—6vp"B] (79)
ﬁt+v-(ﬁﬁ)+fxﬁ:_in_kng—v-(W) (80)
or

V-u# =0, (81)
Ci+V-(u¥C)=V - (KVO) (82)
ﬁt+v-(u#ﬁ)+fxu#:_in—kng+piv-E (83)

where
E = —(pou'n’ — uVxB) + kf x A. (84)

The analysis of Sections 3 and 4 also has its parallel, Boussinesq version. All that
is required is to replace (i) p everywhere by p,, and (ii) density-weighted averages
by Reynolds averages. The factor p, is, once again, included to ensure a direct
correspondence between the variables used in the non-Boussinesq and Boussinesq
versions, as in equation (77). It follows that the exact solution for the vector B

corresponding to equation (68) is now

1
gL
Po VO]

VT x {W+VX lﬁvﬁx (W + u'¢p+ V x G)H (85)

In this way, all the formulae developed in Sections 2,3 and 4 can be applied to the
output from eddy-resolving Boussinesq ocean models. Obviously, care is nevertheless
required in the finite-difference application of formulae such as given by (85), an issue

that will be model specific and is not addressed here.
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6. Summary and Conclusions

A framework for developing mesoscale eddy parameterizations based on density-
weighted averaging at fixed height has been introduced. The approach is to average the
non-Boussinesq equations of motion, and then use the method of McDougall, Greatbatch
and Lu[2001] to show how the averaged non-Boussinesq equations can be approximated
for application in Boussinesq ocean models. The formalism has the advantage that it
treats the continuity, tracer and momentum equations together, as a single entity.

We showed that there are two ways to represent the averaged equations. For
application in Boussinesq ocean models, these are equations (19)-(21) and (34)-(36),
respectively. The set (19)-(21) includes the advective effect of the eddies in the tracer

equation. The GMO90 parameterization is commonly used to parameterize the eddy

VxB
Po

induced transport velocity in (20). It is also necessary to parameterize the
Reynolds stress term, ;—OV . (pTM), in the momentum equation (21). This is commonly
done using a eddy viscosity approach, using positive eddy viscosity coefficients. When
combined with the GM90 parameterization, the effect is to remove energy from the mean
flow. The role eddies can play in driving mean flows [e.g. Holloway, 1992; Greatbatch
and Li, 2000; Greatbatch and Nadiga, 2000; Wardle and Marshall, 2000] is therefore
excluded, and further work is required to find parameterizations to include this effect.
The second approach, corresponding (in the Boussinesq version) to equations
(34)-(36), puts the forcing for the eddy-induced transport into the averaged momentum
equations and is akin to the approach suggested by Wardle and Marshall[2000]. The
effect of eddies in either extracting energy from the mean flow, or in driving mean flow,
is now contained in a generalized Eliassen-Palm flux divergence term, analogous to that
introduced by Gent and McWilliams[1996]. The approach requires that two different
velocity variables be carried in the averaged momentum equation. These velocities are

related by the rotational density flux given by V x B, which, as we noted above, is

commonly parameterized using GM90. There is also the issue of how to parameterize the
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Eliassen-Palm flux divergence, pl—oV -E in (36). It is tempting to try and relate pl—oV -E to
the flux of potential vorticity, as suggested by Greatbatch[1998] in the case of isopycnal
averaging. However, the Ertel potential vorticity is a fundamentally non-linear quantity,
and 1t is not easy to see how best to do this in the case of averaging at fixed height. One
approach might be to relate this term to the flux of quasigeostrophic potential vorticity,
following Wardle and Marshall2000]. As pointed out by these authors, the advantage
of using a potential vorticity based approach is that the effect of eddies in driving mean
flow appears naturally as part of the formalism.

In the second part of the paper, we derived a general solution for the tracer
transport velocity, and found a family of solutions that is closely related to the
Temporal Residual Mean (TRM) velocity introduced by MM. We started by showing
the connection to the approximate TRM solution derived by MM to O(a®), where « is
perturbation amplitude, and then, in Section 4, derived an exact solution valid to any
order in a. By adopting the flux decomposition suggested by Marshall and Shutts[1982],
we extended both MM, and our exact solution, to include diffusion of mean tracer within
the TRM framework. The solution, given by either (68) or (70) (the latter including
the diffusive contribution to the flux) suggests that the tracer transport velocity could
be different for different tracers, depending primary on the structure of the mean field.
This conclusion does not depend on the fact we have used density-weighted averaging
at fixed height. In fact, a form of our exact solution (given by (68)) can be derived in
two dimensions for the case of isopycnal averaging. It follows that concern that the
tracer transport velocity may not be tracer invariant applies quite generally, although
we argued at the end of Section 4 that the issue of tracer dependence is likely to be
more serious in the case of averaging at fixed height, as in this paper, than in the case
of isopycnal averaging. The possibility that a different tracer transport velocity may be
required for different tracers is suggested by the differing performance of parameterized

models on different tracers. For example, the parameterized model of Danabasoglu
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and McWilliams[1995] is much more successful at simulating the observed potential
temperature field than the observed salinity field (although it should be noted that
there is also uncertainty in the surface boundary conditions, especially the freshwater
flux that is important for salinity). If the tracer transport velocity is indeed tracer
dependent, then clearly a particular tracer must be chosen to define u# in order to write
the governing equations in the form (31)-(33) or (34)-(36), in which eddy effects are
primarily transferred to the momentum equation. It would then be necessary to adjust
each individual tracer equation to take account of the difference between the tracer
transport velocity appropriate to that tracer and u#.

Finally, in Section 5, we showed how, in principle, the the ideas and formulae
developed in the previous sections can be used to analyze output from eddy-resolving
Boussinesq ocean models, even though the basic analysis given in this paper used the

non-Boussinesq governing equations.
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