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Abstract
This study was motivated by the need to measure size-at-age, and thus growth rate, in fish

in the wild. We postulated that this could be achieved using accelerometer tags based first

on early isometric scaling models that hypothesize that similar animals should move at the

same speed with a stroke frequency that scales with length-1, and second on observations

that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘effi-

ciently’, is independent of size, confirming that stroke frequency scales as length-1. How-

ever, such scaling relations between size and swimming parameters for fish remain mostly

theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we

introduce a species-specific scaling relationship between dominant tail beat frequency

(TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and

estimated swimming speed within species was independent of length. Similar scaling rela-

tions accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be

used to estimate size-at-time and that accelerometer tags with onboard processing may be

able to provide size-at-time estimates among free-swimming fish and thus the estimation of

growth rate (change in size-at-time) in the wild.

Introduction
In 2007, Neuheimer and Taggart [1] postulated that it might be possible to collect length-at-
age time series (and thus growth rate) among fishes in the wild by using archival accelerometer
tags. The underlying principles for such a postulate can be found in A.V. Hill’s (1950) isometric
scaling model [2] that predicts geometrically similar animals should move their limbs at a simi-
lar velocity and run or swim at the same velocity with a stride frequency that is proportional to
mass-1/3 or length-1. This scaling model relies on basic physics where the work produced by a
muscle during locomotion is a function of its mass and thus the resultant kinetic energy will
depend on the mass and the velocity squared. Consistent with this model, observations from a
range of free-swimming seabirds and mammals, presumed to be swimming ‘efficiently’ [3],
suggested that the animals adopted cruising speeds that are independent of body size and that
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the associated dominant stroke cycle frequencies scaled with mass-0.29 [3]. For geometrically
similar soaring seabirds [4] and penguins [5], the dominant stroke cycle frequency was shown
to be proportional to mass-0.30 and mass-0.28 respectively, and in each the scaling exponent was
not significantly different from -1/3 [3,4,5]. Most recently, Gazzola et al. [6] proposed that for
turbulent flow regime, at a given speed u, tail beat frequency is inversely proportional to tail
beat amplitude. Given the experiments by Bainbridge [7] that indicate tail beat amplitude is
proportional to length at any given speed, tail beat frequency therefore is inversely proportional
to length, which provides a new theoretical justification for such observations [3,4,5]. Such
scaling relationships are expected to hold for large (adult) swimmers in the inertial flow regime
or as long as swimmers are not trading efficiency for another performance parameter such as
speed, with a likely nonlinear relationship in laminar and intermediate flow regimes (e.g.,[8]).

Notably, the above multi-species studies [3] included only two species of fish and each with
a small sample size; Japanese flounder (Paralichthys olivaceus), n = 5, and chum salmon
(Oncorhynchus keta), n = 2. Not only does the limited sample size not allow us to firmly con-
clude that the scaling law does apply for fish species, for the flounder, the dominant stroke fre-
quency (tail beat frequency, TBF) was anomalously low relative to the fitted inter-specific
scaling model. This was attributed to the estimates being derived from potentially ‘inefficient’
swimming [3], and thus contradicts the assumption of ‘efficient’ locomotion [2,3,5], although
there is no clear definition of efficient swimming for fishes.

Efficiency can be defined at several organizational levels such as mechanical efficiency (pro-
peller efficiency) or metabolic efficiency (entire organism). In swimming and locomotion
research, studies define efficiency as the ratio of useful to total work or power. To assess pro-
pulsive performance, studies often calculate hydrodynamic or mechanic efficiency as the ratio
of useful over total work done by the propeller (e.g., [9, 10]); swimming or metabolic efficiency
include muscle and respiratory processes to calculate efficiency (e.g., [11]) or measure oxygen
consumption (energy expenditure) in closed respirometer experiments during steady-swim-
ming. Efficient swimming is also assumed to occur during high-energy-cost movements, e.g.,
during migration or feeding bouts [3]. Efficiency during steady-swimming has further been
measured using the Strouhal number, which relates tail beat amplitude and frequency to swim-
ming speed [3,6,12]. Some of these efficiencies are only applicable in a narrow range of behav-
iours, e.g., steady-swimming. According to Sato et al [3], unlike breath-holding mammals,
reptiles and birds, fish do not necessarily swim efficiently, at least at top speed, and thus Hill’s
isometric scaling may not hold. Furthermore, the deviations apparent for the studied fish spe-
cies in the interspecific scaling relation should not be unexpected since interspecific scaling
relations are known to differ from intraspecific relations (e.g., [13,14]) given ontogenic con-
straints [13] and complications that arise from fitting a bivariate relation to a multivariate
problem [15].

To our knowledge, there is a very limited literature examining the above scaling relations
among sizes and/or species of (adult) fish, and this is likely due to the inherent difficulty of
obtaining such data on free-swimming fish. The few studies that have been published do not
include sufficient data or information to allow the conversion of measurements to a common
size-related parameter. The consequence is that most analyses of the relations between fish size
and locomotion remain theoretical [2,16,17,18]. However, advances in digital accelerometer
tags now provide a method of obtaining the necessary swimming data in the laboratory
[19,20], and in the field [21,22,23], and such data have been used to quantify behavioural states
and rates and to estimate parameters such as energy expenditure and swimming activity
[21,22] through the extraction of tail beat frequency estimates [3,21,22,23].

Quantifying relationships between size and movement may help reconcile co-evolutionary
mechanisms [4] and help address the ecological implications of size-dependent locomotion
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[24]. It will also have practical applications in fisheries science because fish size influences met-
abolic rate, physiology, and ingestion rate, and thus growth, maturity and fecundity and ulti-
mately abundance [24]. Size-at-age measures are also essential in fisheries science because
virtually all population and assessment models involve some component of growth-rate-
dependent demography that varies among cohorts and age-classes. Measuring size-at-time and
inferring growth rate in wild fish is inherently difficult, and to date can only be achieved over
relatively long time scales using mark and recapture techniques or by using post-mortem mor-
phometrics such as otolith microstructure that have their own inherent uncertainties [25,26].

Here, we suggest a new method of measuring size-at-time in fish, and potentially growth
rate, based on Hill’s isometric scaling. We hypothesized that if it is possible to establish a
within- or among-species allometric relationship (model) that relates fish size to tail beat fre-
quency from acceleration data, then such a model could be used to estimate size-at-time, and
thus growth rate over time in the wild. We therefore collected acceleration data and the derived
tail beat frequency estimates among a size range of free-swimming saithe (Pollachius virens), a
species widely studied in kinematic experiments [27,28,29] and analytical models [30,31], and
shortnose sturgeon (Acipenser brevirostrum) [32,33,34].

Materials

(a) Study animals
Saithe (n = 18) of fork length (l; m) ranging from 0.26 to 0.56 m (average ± SD, 0.41 ± 0.089 m)
with mass (m; kg) between 0.18 and 1.6 kg (0.93 ± 0.48 kg) were collected near Nova Scotia,
Canada. Accelerometry data were obtained from the fish swimming freely at Dalhousie Uni-
versity in a large mesocosm with a diameter of 15.24 m, a depth of 3.54 m at the perimeter and
3.91 m at the centre, and a volume of 684 m3 natural seawater held at 9°C ± 2. Swim trials were
conducted over 9 trial-days spanning a month. Each individual fish swim trial lasted between
24 and 29 h with a recovery period of two to five days.

Shortnose sturgeon (n = 22) with l ranging from 0.56 to 1.2 m (0.79 ± 0.18 m) were used for
free-swimming trials. Individual mass (not measured) was estimated using a mass-at-length
relationship for adult fish (Fig 7 within [35]) based on average age (collected in 1998–1999 in
the Saint John River, NB, Canada and held in captivity at the nearby Mactaquac Biodiversity
Facility). Accelerometry data were collected over a one-week period in two 11 x 11 m-wide,
1 m-depth, outdoor flow-through tanks held at an ambient river-water temperature of
15.5 ± 0.5°C.

(b) Accelerometers
We used three tri-axial accelerometer tag models (Maritime bioLoggers, Halifax, Canada). For
saithe, we recorded tri-axial acceleration at 50 Hz (10-bit resolution) at ± 4 go. Saithe exceeding
40 cm were tagged with the MBL PT-1 (50 mm length, 23 mm diameter, 18.8 g in air). Smaller
fish were tagged with the MBL PT-2 (25 mm length, 17 mm width, 11 mm height, 6.1 g in air).
Shortnose sturgeon were tagged with the MBL PT-0 (53 mm length, 35 mm width, 15 mm
height, 14.6 g in air) sampling at 550 Hz (10-bit resolution) at ± 3 go.

(c) Saithe swim trials
Saithe were anaesthetized with MS222 (40 mg l-1), measured for l andm and tagged using
Petersen Disc tags (see [19] for tag attachment details) and before each swim trial an acceler-
ometer was attached (in a removable manner) to the disc. Fish swam ad libitum for 48 hours
with no external stimulus save a natural daylight cycle. Following each trial the accelerometer
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was detached and the animals recovered in a holding tank (2 x 2 m). At least 4 h of free-swim-
ming accelerometer data were collected for each individual fish for a total of 845 h of data.

(d) Shortnose sturgeon swim trials
Sturgeon were measured for l and tagged using a spandex belt (housing the accelerometer)
wrapped around the caudal peduncle, anterior to the dorsal fin. Fish were randomly assigned
to the swim-trial tank (isolated) or the holding tank (communal) where they were allowed to
swim ad libitum in a continuous but spatially variable current (0.0 to 0.3 ms-1) in natural day-
light conditions. At least 0.5 h of free-swimming data were collected for each individual for a
total of 18 h of data.

Methods

(a) Estimating dominant tail beat frequency (TBF) from acceleration
Tail beat is a non-stationary periodic oscillation in the acceleration time series [3,21,22]. Thus,
to extract continuous, steady swimming data from accelerometer records, we defined the
steady swimming segment such that TBF (Hz) did not statistically vary within a segment. We
then developed a TBF extraction algorithm that was based on zero-crossings (S1 Fig; see also
[36,37]) with adaptive window lengths. The algorithm was applied to a time series after remov-
ing the high-frequency noise (IIR Butterworth filter with a 15 Hz cut-off). An initial window
length was chosen to resolve the average, expected, species-specific TBF [27,34], e.g., 2 seconds
for saithe. Steady swimming segments were those where the period between zero-crossings was
‘stable’; established by comparing the variability in the zero-crossing intervals (i.e., beat peri-
ods, Δt’s) to a stability threshold that was based on the range of Δt’s in the entire series
(Δtmax−Δtmin) multiplied by a scaling parameter. Segment length was then established by statis-
tically comparing consecutive windows of TBF estimates based on nonparametric mean com-
parisons. Each series of consecutive windows of relatively invariant TBF was assumed to
represent a steady swimming segment. To estimate the dominant TBF we combined segments
from the same individual among multiple swim trials. The algorithm above was used to extract
a list of frequencies and corresponding segment lengths. Stable TBF segments within the upper
10th percentile, by duration, were used for analyses, again assuming they represented steady
swimming. These segments were then used to establish weighted histograms, means, medians
and standard deviations, where the weights corresponded to the length of each segment with a
stable TBF.

(b) Species-specific analyses
We calculated weighted log-log regressions for each species using the moments of the TBF dis-
tribution. The response variable was loge of the median TBF obtained from the weighted TBF
distributions for each individual, and the predictor variable was loge of l orm. The regression
weights were determined using the variance of the loge median TBF [38, 39].

(c) Average swimming speed
Absolute average swimming speed, u (ms-1), was estimated as a function of dominant TBF and
l based on literature models (see S1 File). For saithe we used the empirical relation provided by
Videler and Hess (Table 1 within [27]) where u = l • 0.977 TBF 0.883. For shortnose sturgeon we
used the relation from Long (Fig 1 within [34]) where u = l • (0.005 + 0.138 TBF).
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Algorithm computations and statistical analyses were performed using R [40], and
MATLAB 8.0 [41]. Unless otherwise noted, all estimates are provided as the average estimate
plus or minus one standard deviation. Subscripts indicate species (P, saithe and S, sturgeon).

Ethics. Fish care and protocols for fish holding, surgery, tagging, and swim trials were
approved by Dalhousie University (saithe, Permit 12–049) and Mount Allison University (stur-
geon, Permit 10–16) in accordance with the Canadian Council for Animal Care standards.

Results

(a) TBF distributions
TBF estimates for saithe were log-normally distributed (Fig 1A) with medians ranging from 0.6
to 2 Hz (1 ± 0.3 Hz) across all sizes. Estimates for sturgeon were near log-normal (Fig 1B) with
medians ranging from 1.1 to 2.4 Hz (1.5 ± 0.3 Hz). For each species loge l was normally distrib-
uted (Anderson Darling: saithe p> 0.01; sturgeon p> 0.05).

(b) TBF as a function of length
In general, fish length and mass tend to be strongly correlated (for saithe from our data, r2 =
0.93 and for sturgeon from Dadswell [35], r2 = 0.99). To avoid redundancy we focus here on
length and the allometric relationships are summarized in Tables 1 and 2. Equivalent results
based on mass are provided in S1 File.

As shown in Fig 2A and Table 1, the dominant (median) TBF was a strong function of l for
each species: for saithe

TBFP ¼ 0:43 l�0:99 ðn ¼ 18; r2 0:73Þ; ð1Þ

Fig 1. Examples of normalized tail beat frequency (TBF, Hz) density distributions from accelerometer records of free-swimming (a) saithe (n = 6)
and (b) sturgeon (n = 6) based on weighted histograms of TBF extracted using the zero-crossing algorithm.

doi:10.1371/journal.pone.0144875.g001
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and for sturgeon

TBFS ¼ 1:1 l�0:89 ðn ¼ 22; r2 ¼ 0:82Þ: ð2Þ

The above length exponents were not different (p = 0.64) between species and the 95% con-
fidence intervals (CIs) for the slopes each bracketed a slope of -1.0 (Table 1) as predicted
[2,3,4,5].

The species-specific relations could not be combined for phylogenetic analyses [3,4,5]
because average TBF and length among the sturgeon were each greater than among the saithe
(Student’s t-test, p< 0.05) and thus the difference between their respective proportionality
constants. When TBF estimates and lengths were scaled by the species-specific average TBF
and average length, the TBF for the combined species was again a strong function of l (Table 1,
Fig 2B);

TBF ¼ 0:94 l�1:0 ðn ¼ 40; r2 ¼ 0:73Þ: ð3Þ

(c) Swimming speed as a function of length
The derived absolute swimming speed estimates, which were estimated from the literature
[32,34] were normally distributed (Anderson Darling, p> 0.5, Fig 3) with average speeds of
0.41 ± 0.05 ms-1 for the saithe, and 0.15 ± 0.01 ms-1 for sturgeon. The response variable, l, was
log transformed to stabilize the variance. Within species, average swimming speed was inde-
pendent of l (p> 0.01, Table 1, Fig 3A). While the length exponents for each species were not
different (Table 1.), the proportionality constants were (Fig 3A), again preventing inter-species

Table 1. Summary of allometric relations among swimming parameters based on dominant tail beat frequency (TBF, Hz), estimated swimming
speed (u, ms-1), and fork length (l, m) in two fish species. Subscript, sd, indicates standardized by the species-specific average, the p-value indicates sig-
nificance between predicted and observed β where the 95% confidence interval (CI), coefficient of determination (r2) and sample size (n) are provided.

Species Relation Exponent (β)* 95% CI for β Predicted β a p r2 n

P. virens TBF / lβ -0.99 (±0.15) [-1.3; -0.68] -1 0.87 0.73 18

u† / lβ 0.12 (±0.13) [-0.16; 0.40] 0 0.30 0.01 18

A. brevirostrum TBF / lβ -0.89 (±0.094) [-1.09; -0.69] -1 0.29 0.82 22

u‡ / lβ 0.12 (±0.092) [-0.067; 0.32] 0 0.19 0.01 22

Combined TBFsd / lβsd -1.0 (±0.097) [-1.2; -0.80] -1 0.80 0.73 40

usd
†‡ / lβsd 0.12 (±0.086) [-0.054; 0.29] 0 0.17 0.05 40

aPredicted value based on [1]

*from log-log ordinary least square slope
†using u and TBF model from [27]
‡ using u and TBF model from [34]

doi:10.1371/journal.pone.0144875.t001

Table 2. Summary of regressionmodels for predicting fork length (l, m) as a function of dominant tail beat frequency (TBF, Hz) for saithe (P. virens)
and sturgeon (A. brevirostrum) where the proportionality constant with the 95% confidence interval (CI), exponent (β) with standard error (SE) and
95%CI, coefficient of determination (r2) and sample size (n) are provided.

Species Relation Proportionality constant, b* [95% CI] Exponent, β*(±SE) [95% CI] r2 n

P. virens l / b TBF β 0.47 [0.39; 0.45] -0.74 (±0.11) [-0.97; -0.50] 0.73 18

A. brevirostrum l / b TBF β 1.1 [0.97; 1.1] -0.91 (±0.10) [-1.1; -0.70] 0.81 22

* from log-log ordinary least square intercept and slope

doi:10.1371/journal.pone.0144875.t002
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comparison. When standardising the response and predictor variables by the species-specific
averages, the standardized average swimming estimates were independent of l (weighted ordi-
nary least squares, p = 0.17, Table 1, Fig 3B).

(d) Length as a function of TBF
Given Eq 1 and Eq 2 above, it is not surprising that from a prediction perspective length was a
function of dominant TBF (Fig 4A, Table 2) where l = 0.47 TBF − 0.74 (r2 = 0.73), and also for
sturgeon (Fig 4A, Table 2) where l = 1.1 TBF − 0.91 (r2 = 0.81). The species-specific exponents
were different (p = 0.003) and the exponent for sturgeon as not different from -1 (p = 0.4), and
for saithe it was marginally different from -1 (p = 0.03). Fig 4B illustrates the uncertainty in size
predictions for each species based on the maximum sizes (~1.2 m) typically observed in nature
[35,42]. For each species, the 95% prediction uncertainty was expressed as PU = t0.975,n-2 SElp/lp,
where lp is the model predicted size and SE is the associated standard error. Due to the fish
lengths available for the study, the greatest confidence for prediction was at intermediate sizes
(> 0.2 and< 0.6 m for saithe and> 0.4 m for sturgeon). The least uncertainty for saithe was at
0.4 m (~25%) and for the sturgeon at 0.7 m (~18%), while the largest uncertainty for saithe was
at 1.2 m (~36%) and for sturgeon at 0.2 m (~30%).

When TBF observations collected from a comparable sturgeon species in the wild during
ascent (Chinese sturgeon, Acipenser sinensis [43]) are used as model input (1.08 Hz, 0.77 Hz,
0.91 Hz), length predictions (1.03 m, 1.39 m, 1.19 m) are between 4–14% when compared to
the measured length (0.95 m, 1.22 m, 1.15 m, respectively), which provides more confidence in
model results.

Fig 2. Log-log relations between (a) dominant tail beat frequency (TBF, Hz) and length (m) and (b) standardized TBF in relation to standardized
length for saithe (solid circles, n = 18) and sturgeon (open triangles, n = 22), where the weighted ordinary least square regressions (solid line) are
bracketed by the 95% confidence intervals (CIs) around the regression (dashed line) and the unweighted 95%CIs around the predictions (dotted
lines).

doi:10.1371/journal.pone.0144875.g002
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Fig 3. Log-log relations between (a) swimming speed and length and (b) standardized swimming speed and standardized length for saithe (solid
circles, n = 18) and sturgeon (open triangles, n = 22) where weighted ordinary least square regressions (solid line) are bracketed by the 95%
confidence intervals (CI) around the regression (dashed lines) and unweighted 95%CI around the predictions (dotted lines).

doi:10.1371/journal.pone.0144875.g003

Fig 4. (a) Log-log relations between dominant tail beat frequency (TBF, Hz) as predictor and length (m) for saithe (solid circles, n = 18) and
sturgeon (open triangles, n = 22) showing ordinary least square regressions (solid line) bracketed by the 95% confidence intervals around the
regression (dashed lines) and predictions (dotted lines), and (b) prediction uncertainties, PU as a function of length (m) for saithe (sold line) and
sturgeon (dashed line) expressed as PU = 100 t0.975,n-2 SElp/lp where lp is the model prediction and SElp is the associated standard error for the
prediction.

doi:10.1371/journal.pone.0144875.g004
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Discussion
It has been historically difficult to examine allometric scaling relationships between swimming
speed, tail beat frequency and size in fish beyond the theoretical [2,16,17,18], largely due to the
difficulty of obtaining data on free-swimming fish across a suitable size range [44]. Here, we
quantified and validated theoretical allometric scaling relationships for two different free-
swimming fish species of relatively large but different size ranges by using accelerometer tags.
Using the acceleration records from the free-swimming saithe and sturgeon, we developed a
signal-processing algorithm that extracts, from a non-stationary signal, the dominant tail beat
frequency (TBF) for steady swimming and demonstrated that TBF is a function of size for each
species; scaling with length-1 and mass-0.29. These exponents are not statistically different from
Hill’s isometric prediction that TBF scales with length-1 and mass-1/3 [2] and results from the
species-specific independence between absolute average swimming speed and each of length
and mass [3]. These results subsequently allowed us to demonstrate that dominant TBF can be
used to predict species-specific length-at-age with prediction uncertainties as low as 18%, thus
providing a novel method for estimating length-at-age in the wild.

Similar to our results, Sato et al. [3] provided a unifying scaling model that predicts that
similarly sized animals, among many large and widely disparate species (0.5 to 1600 kg), should
display the same dominant stroke cycle frequency at a given mass (or length). In contrast, we
found species-specific differences manifested as different model proportionality constants,
despite the presumed geometric similarities. Such differences may be masked in Sato et al. by
the large species-size range they analyzed and when their data were reanalyzed from a species-
specific perspective, the differences emerged. Our results above predict that the dominant TBF
for sturgeon is twice that of saithe at the same size (and the observed was as much as three fold
higher), and we estimated that the absolute swimming speed for saithe, while necessarily taken
with caution, was lower in sturgeon of the same size. Since our results also indicate that abso-
lute swimming speed and size are independent for each species [3], this difference may be due
to differences in pressure load [6]. Morphological limitations, such as high drag resulting from
body form and external bony scutes, exacerbated by low thrust from a heterocercal tail [33],
may further account for reduced swimming ‘efficiency’ [33] among sturgeon relative to simi-
larly sized saithe. Differences between interspecific and intraspecific scaling are to be expected
given that intraspecific scaling faces ontogenetic constraints. Interspecific scaling coefficients
can also be expected to differ (e.g., scaling across mammalian leg bones versus scaling within
bovine leg bones, [45]). Such complications arise from fitting a bivariate relation to a multivari-
ate problem [15].

A theoretical basis for the observed species-specific differences may be found by extending
the theory provided by Gazzola et al. [6]. At very high Reynolds numbers (Re> 103 to 104, as
for all fish studied here), and balancing thrust and skin drag for elongated swimming bodies, it
follows [6], that

u / fA ð4Þ

where A relates to the tail beat amplitude. For fish of a given size, when swimming at high
speeds, they maintain an approximately constant length-specific tail beat amplitude [6,7]
which can be defined as A = al, where a is some species-specific coefficient; e.g., a = 0.18 for
saithe [6]. Given that u/ f a l, and if f/ l -1 as indicated by our observations and those of oth-
ers, then umust be constant. Similarly, at a given speed u, f relates to length as f/ (al)-1 and
this not only provides a mechanical justification for the observed scaling relationship, it also
offers an explanation for the differences in the species-specific models; i.e., the species-specific
coefficient, a (that scales the constant tail beat amplitude with body length), affects the constant
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in the scaling relationship accordingly. Until it can be demonstrated that length specific stroke
amplitude (a) is species independent, it is difficult to validate an interspecific relationship. Not
only does this advance the scaling between TBF and length, it also implies that for a given spe-
cies, fish swimming speed is independent of length.

Hill’s isometric model [2] is assumed to hold only for efficient movement; i.e., ‘natural
swimming behaviour of free-ranging animals in contexts where they are expected to swim effi-
ciently’ [3]. While our studies did not allow the observation of movements unequivocally
known to be associated with the above contexts, the predicted relationship was validated. This
was achieved by estimating the dominant TBF from the acceleration record using a novel algo-
rithm and discarding unsteady swimming movements. Additionally, we confirmed that for the
longest 10th percentile of the continuous steady swimming segments used in the analysis,
swimming could be shown to be efficient by calculating the Strouhal number (St); a commonly
used index of efficient swimming (St = Af/u, where A = tail beat amplitude, f = tail beat fre-
quency and u = swimming speed [3,6]). For example, St for saithe was calculated using the esti-
mated swimming speed [27] with a tail beat amplitude of 0.18 l [6]. For the stable TBF
segments the St estimates were between 0.22 and 0.23; close to that expected for saithe during
efficient swimming [31]. Additionally, it can be shown that dominant TBF is linearly propor-
tional to maximum TBF (S1 File, S4 Fig, S3 Table), which further, in this context, validates its
use as a proxy for efficient swimming. Our results are coherent with the Sato et al [3] cross-spe-
cies model and consistent with the prediction by Hill who equated the work a muscle produced
(/m) at a given frequency (f) with the mechanical power required to counteract drag. How-
ever, our results are in stark contrast to the theoretical suggestions presented by Bainbridge [7]
that u/ l 0.39 for high Reynolds numbers, by Gray [17] that f/ l -0.44, and by andWu [46] that
f/ l -0.88. If swimming speed is proportional to length, with some exponent c, then f scales with
l c-1 as predicted by Webb [47,48]. For example, at maximum sustained tail beat frequency,
TBFMS is proportional to l

-0.51 (see S1 File). Based on Eq 4, this occurs if uMS / l 0.49, which is
close to the predictions of Webb [24,48]. This suggests that the above theoretical models based
on muscle power output are insufficient in explaining the underlying mechanism(s) for fish.
The most likely reason is the discrepancy between (theoretical) swimming speeds and the
swimming modes considered (e.g., critical, maximum, sustained, etc.) and how poorly those
modes correspond to the observed dominant swimming mode, which may in fact be the pre-
ferred swimming mode adapted to by a given fish/species [2,3]. This may help explain why our
estimates of average TBF are much lower than those predicted by Videler and Hess [27] and
Videler and Wardle [49]; and closer to estimates made for comparable species in the wild, such
as Chinese sturgeon (Acipenser sinensis [43]), trout (Oncorhynchus mykiss, [22]), and sockeye
salmon (Oncorhynchus nerka, [50]).

Implications for measuring size-at-age in the wild
We have demonstrated that it is possible to predict size from dominant TBF by using species-
specific models based on accelerometer tags mounted on free-swimming saithe and shortnose
sturgeon of various sizes. While the confidence intervals for each of the models are reasonable,
the large prediction intervals may not yet provide a suitable alternative to the conventional
methods of estimating size-at-age to infer growth rate. We think that the model coefficients of
determination and the prediction intervals, and therefore length prediction certainty, should
improve if such studies were repeated over longer periods within more natural environments
using a greater range of lengths. Based on the theoretical prediction as outlined above, and
demonstrated by empirical data for sturgeon, this scaling exponent is predicted to be -1 since
f/ (al)-1 and therefore l/ (af)-1. In summary, for a given species, size is directly and inversely
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related to the dominant tail beat frequency, thus allowing the estimation of size from the domi-
nant TBF in the lab or in the wild, as shown here from an empirical and theoretical perspective.
Differences that fish experience in the lab vs. field environment (currents, schooling, behav-
iour), may certainly affect the observations and associated prediction model. Some of our
observations may allow us to predict such effects on the prediction model. The experimental
set-up leads us to conclude that the effect of currents is expected to be minimal, since for stur-
geon, which were exposed to variable currents, the scaling relationship did not seem to be
affected. This is not surprising as for most, but not all fish in the ocean, lakes and large rivers,
the current eddy-field is much larger than the fish. Furthermore, when predicting length with
TBF from wild sturgeon during ascent (Acipenser sinensis [43]), the high prediction accuracy
(4–14%) affords some confidence in the model. Schooling may have an effect on steady swim-
ming. For example, saithe are a schooling species and the data were collected while fish were
spending some time swimming in schools and some time swimming solitary. However, these
differences in swimming behaviour were not apparent in the scaling relationship. Sturgeon
were randomly assigned to a swim tank where they were allowed to swim solitarily or with
conspecifics. Again, when data were pooled by experiment type (solitary vs. communal) no
difference appeared. We do not believe that behavioural differences in the wild will have a
significant effect on the scaling relationship since, e.g., feeding behaviour and other movement-
related behaviour (spawning, escape etc.) is often exhibited by non-steady and burst accelera-
tion swimming (e.g.,[51]). Since the proposed algorithm removes such swimming bouts prior
to estimating the dominant tail beat frequency, such behavioural differences should not affect
the results.

For the model predictions to prove useful in measuring size-at-time (and eventually growth)
a study similar to ours needs to be conducted using fish as they grow to unambiguously dem-
onstrate that within individual variation over time is less than within and among size-class var-
iations. Such a study would determine the utility of the model and using accelerometry to
estimate size-at-time (and growth) in the wild as a reasonable alternative to conventional meth-
ods such as post-mortem morphometrics that include otolith microstructures. While it is gen-
erally accepted that otolith growth is a ‘running average’ of somatic growth [52] there are
uncertainties in the accuracy of back-calculations of fish size or growth rate from otolith size
due to reader bias [53,54], or bias introduced by the way the otolith is prepared [1,55].

The use of more replicates among size-classes and across a larger size-range will likely
improve the prediction interval and explained variance by reducing within-class variation that
is likely related to individual variability in the short-term response to tagging-induced stress.
Adding additional parameters that scale with length, and (or) by combining the knowledge of
the initial fish size at capture, along with the theoretical characteristics of growth potential,
could further improve the model prediction of size over time by using the prediction from the
scaling model in a state-space framework. The indirect observations of length from the scaling
relationship provides the final element to be combined with an initial measurement of fish
length (when tagged) and a prediction from fish growth theory, which may even include addi-
tional predictors (such as temperature [1]) to construct a state space model of fish length at
time. Such a model may provide a more reliable time series of length-at-age (see S1 File). For
example, maximum velocity (or maximum tail beat frequency) scales with length as shown in
S4 Fig and S3 Table using 11 species drawn from the literature [7,48], and maximum TBF is
proportional to l -0.51 (n = 44, r2 = 0.41). However, it is difficult to observe maximum TBF in
nature and likely more difficult to determine when maximum TBF is reached. Furthermore,
when such a model is used to calculate maximum TBF for the saithe and the sturgeon, maxi-
mum TBF was linearly related to dominant TBF for saithe with a slope of 2.6 (n = 18, r2 = 0.79)
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and for sturgeon with a slope of 1.5 (n = 22, r2 = 0.78). Therefore, adding this parameter to the
scaling model would prove redundant.

Assuming our prediction models can be further validated in nature, and that micro-process-
ing technology of archival accelerometer sensors can employ an a priori determined algorithm
that continuously (or duty-cycled) calculates size-at-time, then the in situ estimation of size-at-
time and growth rate could be achieved. The algorithm that relates dominant TBF to size has
the potential of providing a powerful tool in estimating size-at-time in the wild; something yet
to be achieved. Since this algorithm is based on sampling a known log-normal TBF distribu-
tion, which would require ~30 measurements for reliable estimation (Central Limit Theorem),
and the dominant TBFs among comparable species can be sampled at a low frequency (~ 15
Hz), then the accelerometer-tag power consumption would be comparably low.

Supporting Information
S1 Fig. Tail beat frequency extraction algorithm flow chart. Flow chart of the zero-crossing
algorithm used to extract time-varying tail beat frequency (TBF) where Δt is the beat half
period, σ is the standard deviation, E(Δt)i is the average beat half period within window i and
ThS� is a tuning parameter that is a function of the range of all periods (i.e., Δtmax—Δtmin) in
the time series multiplied by a scaling value. Finding zero-crossings is based on [11]. A typical
species-specific initial window length,W for e.g., saithe is 2 seconds.
(PDF)

S2 Fig. Relationship between dominant tail beat frequency and mass. Log-log relations
between (a) dominant tail beat frequency (TBF, Hz) and mass (kg) and (b) standardized TBF
in relation to standardized mass for saithe (solid circles, n = 18) and sturgeon (open triangles,
n = 22). Weighted ordinary least square regressions (solid line) are bracketed by the 95% confi-
dence intervals (CIs) around the regression (dashed line) and the unweighted 95% CIs around
the predictions (dotted lines).
(EPS)

S3 Fig. Relationship between swimming speed and mass. Log-log relations between (a)
swimming speed (ms-1) and mass (kg) and (b) standardized swimming speed and standardized
mass for saithe (solid circles, n = 18) and sturgeon (open triangles, n = 22) where weighted
ordinary least square regressions (solid line) are bracketed by the 95% confidence intervals (CI)
around the regression (dashed lines) and unweighted 95% CI around the predictions (dotted
lines).
(EPS)

S4 Fig. Maximum Tail Beat Frequency as a function of length and dominant Tail Beat Fre-
quency. (a) Log-log relation between maximum tail beat frequency (TBF) in relation to length
based on 11 species (n = 44) from [7,48] and (b) linear relation between maximum tail beat fre-
quency (TBF) and dominant TBF for saithe (filled circles, n = 18) and sturgeon (open triangles,
n = 22) with ordinary least square regressions (solid line) bracketed by 95% confidence inter-
vals around the regression (dashed line) and the predictions (dotted lines).
(EPS)

S1 File. Scaling mass and tail beat frequency, and details on the calculation of swimming
speed.
(DOCX)

S1 Table. Allometric relations among swimming parameters and body mass. Summary of
allometric relations among swimming parameters based on dominant tail beat frequency (TBF,
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Hz), estimated swimming speed (u, ms-1), and body mass (m, kg) for saithe (P. virens) and
sturgeon (A. brevirostrum). Subscript, sd, indicates standardized by the species-specific average,
the p value indicates significance between predicted and observed β where the 95% confidence
interval (CI), coefficient of determination (r2) and sample size (n) are provided.
(DOCX)

S2 Table. Summary of regressions between mass and tail beat frequency. Summary of
regression models for predicting body mass (m, kg) as a function of dominant tail beat fre-
quency (TBF, Hz) for saithe (P. virens) and sturgeon (A. brevirostrum) where the proportional-
ity constant with the 95% confidence interval (CI), exponent (β) with standard error (SE) and
95% CI, coefficient of determination (r2) and sample size (n) are provided.
(DOCX)

S3 Table. Summary of regressions between tail beat frequency, maximum tail beat fre-
quency and length. Summary of log-log regression models for predicting tail beat frequency
(TBF, Hz) as a function of maximum tail beat frequency (TBFmax) for saithe (P. virens) and
sturgeon (A. brevirostrum), and fork length (l, m) a function of TBFmax for various fish species
from [3,11], where the proportionality constant/intercept and exponent/slope (β) with stan-
dard errors (SE) and 95% confidence intervals (CI), coefficient of determination (r2) and sam-
ple size (n) are provided.
(DOCX)
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