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a b s t r a c t

Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and
connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conserva-
tion to the design of marine reserves and the mitigation of species invasions. Here we compare estimates
of real particle dispersion in a coastal marine environment with similar estimates provided by hydro-
dynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a
magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration
of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location
dispersed through the collector array over a 5e7 d period. A virtual release and observed (real-time)
environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to
estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector
array and the number of VPs that passed through each corresponding model location were enumerated
and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the
comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity
parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the
range of 5.19e11.44 km, while those from the model simulations were comparable at 1.89e6.52 km, and
also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in
modelling and are postulated to be related to MAP losses from the water column and (or) shear
dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a
promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic sys-
tems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Early life-stage dispersal influences recruitment in both terres-
trial and aquatic species, is a widespread characteristic that spans
taxonomic groups, and is especially exhibited by aquatic verte-
brates and invertebrates, terrestrial invertebrates, and aquatic and
terrestrial plants. It is a fundamental process that contributes to
variation in the distribution and abundance of a species (Begon
et al., 2006). Biological dispersal refers to the spread of in-
dividuals away from a source location through passive and (or)
active means, where the passive component is especially important
icle; VP, virtual particle; Kp,
ter [m2 s�1].
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within a fluid such as air or water. Dispersal affects population
dynamics (e.g., the distribution of individuals and ultimately
reproduction and recruitment), population genetics (e.g., gene
flow), and thus the spatial scale of population connectivity through
the exchange of individuals among geographically separated sub-
populations (metapopulation) of a species (Clobert et al., 2001;
Kinlan and Gaines, 2003). Dispersal is often defined in terms of
the dispersal kernel, the function that describes the probability of a
particle or propagule moving from some source location to all other
locations (Siegel et al., 2003; Nathan, 2006; Cowen et al., 2007;
Gawarkiewicz et al., 2007).

The significance of dispersal in explaining the distribution and
abundance of marine species has been recognised for at least a
century (Hjort, 1914). Marine species exchange individuals, and
subsequently genes, among subpopulations mainly through larval
dispersal (Kinlan and Gaines, 2003; Sale et al., 2005); however, the
dominant scales of dispersal in the ocean are still “not known”
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1 http://climate.weatheroffice.gc.ca/climateData/bulkdata_e.html?timeframe¼
1&Prov¼XX&StationID¼8990&Year¼2009&Month¼8&Day¼1&format¼csv.
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(Pineda et al., 2007) and knowledge of howmarine populations are
connected in space and time is thus limited (Largier, 2003; Siegel
et al., 2003; Cowen et al., 2005, 2007; Kinlan et al., 2005). The
variance in dispersal attributable to physical forces (e.g., advection
and diffusion) and biological processes (e.g., spawning, behaviour,
and mortality) must be determined to enhance the comprehension
of dispersal and connectivity in marine systems (most authors cited
above). Here we adopt the generic definitions provided by Levin
(2006) wherein dispersal (dispersion) refers to where particles or
propagules go (their spread) while connectivity refers to where
they come from via dispersal.

Motivations to quantify dispersal and connectivity now include
sustainable management of commercially valuable and (or) en-
dangered species, mitigating the spread of invasive species, con-
servation of biodiversity through the design of marine reserves,
prediction of species response to climate change, and evaluating
the impact of contaminants (Cowen et al., 2005; Kinlan et al., 2005;
Levin, 2006; Aiken et al., 2007; Becker et al., 2007). For example,
one of the main factors driving the design and implementation of
Marine Protected Areas (MPAs) should be the degree of connec-
tivity among local populations of the species that need protection.
With explicit data on larval dispersal, it should be possible to adjust
reserve size, placement, and spacing to achieve specific manage-
ment objectives (Sale et al., 2005; Cowen et al., 2007; Fogarty and
Botsford, 2007; Jones et al., 2007). Further, empirical estimates of
dispersal are necessary to guide numerical modelling studies that
are often the basis of management and conservation decisions.
Robust measurements of dispersal in the marine environment are
rare, and when they are obtained, they must be used to test the
assumptions and hypotheses resulting from such models to
strengthen model capabilities and associated inferences (Thorrold
et al., 2002; Siegel et al., 2003; Cowen et al., 2005; Aiken et al.,
2007; Pineda et al., 2007; Werner et al., 2007; Rasmussen et al.,
2009).

In this paper we provide a directmeasure of particle (propagule)
dispersion in the Northumberland Strait region of the southern Gulf
of St. Lawrence and make a direct comparison to dispersion esti-
mates provided by hydrodynamic modelling of the same region.
We do so through the use of an advanced technology system that
can address and overcome many of the problems associated with
conventional tracing technologies (e.g., drifters, dye, current me-
ters, and numerical models) frequently employed to study disper-
sion (Ruddick and Taggart, 2006, 2011; see Supplementary Material
#1). The system uses magnetically attractive particles (MAPs) and a
moored magnetic-collector array that allows us to quantify the
passive component of the dispersal kernel at the scale of dispersing
early-stage planktonic organisms (days to weeks, km to 100 km),
thereby providing the biological null model of larval dispersal. The
weak buoyancy and slow rise rate designed in the MAPs provides
important properties that allow them to mimic weakly-buoyant,
passive propagules. Further, as the passive component of connec-
tivity is driven by advective and diffusive processes, knowledge of
the dispersal kernel allows the degree of passive connectivity in
time and space to be readily estimated for a defined region.

Given the ubiquitous use of dispersal and connectivity estimates
that are based on numerical models, it is exceptionally important to
compare the MAP results with similar results provided by an
existing high-resolution hydrodynamic model designed for the
study area that computes Lagrangian trajectories. In addition to
achieving a direct model comparison, assessment, and possible
improvement, we perform sensitivity tests related to the variation
of a key but generally not well-quantified parameter; small-scale
diffusivity. Environmental conditions during MAP experiments
vary in an uncontrollable manner such that there will always be
unanswered questions about dispersal in conditions different from
those present for any given experiment. The advantage of
comparing MAP results with model results, under the same con-
ditions, is that the model predictions can be extrapolated to
determine the effects of different environmental conditions (e.g.,
wind, tide, etc.) on dispersal estimates. Only when this is achieved
can the biological influences (e.g., behaviour, mortality, etc.) on
dispersal be confidently incorporated and assessed when using
such models.

2. Methods

2.1. Study site

The particle dispersion study was conducted in August 2009 in
the Northumberland Strait (Fig. 1 and S1). The Strait is nominally
20e30 km wide, 30e40 m deep at mid-channel, and separates
eastern New Brunswick and Nova Scotia (NS) from Prince Edward
Island (PEI). Residual flow though the Strait is normally west to east
with a net flow of the order kilometres per day (Lauzier, 1965).
Particles (detailed below) were released insideMurray Harbour, PEI
and the particle collector array (also detailed below) was deployed
from inside the Harbour and out into the eastern Strait; a region
that is dynamic and tidally-active and where currents can reach
1.5m s�1, particularly along theMurray Head peninsula. Therewere
variable winds during the study, including the passage of Hurricane
Bill through the region two days post-release. Figure S2 illustrates
the cyclonic expression of Hurricane Bill and the evolution of the
wind-driven surface-drift velocity that we estimated as 3.016% of
wind velocity (Csanady, 1982). Wind speed and direction were
recorded hourly at Caribou Point, NS (Environment Canada, Na-
tional Climate Data and Information Archive1), on the south side of
the Strait. Detailed variations in the wind field velocity components
(u and v) over the deployment period are provided in Figure S3.

2.2. Magnetically attractive particles (MAPs) and collector array
technology

The MAPs are composed of hollow glass (SiO2) microspheres
that provide buoyancy, magnetite (Fe3O4) that provides magnetic
attraction, and a food-safe epoxy resin that acts as the binding
agent. The particles are typically designed to be spherical, in the
100e500 mm equivalent spherical diameter (esd) size range, with a
specific gravity (SG) of 1.00 for freshwater-applications or 1.02 for
marine-applications. This design allows them to mimic passive
propagules suspended in the surface mixed-layer. When manu-
factured with colour additives (dyes or pigments) they can be used
in multiple-release tracer studies. In this study, the MAPs had a
median esd of 195 mm and a geometric mean esd of 200 mm
(Fig. S4), a nominal SG of 1.02, and an average rise rate of 1e
4 mm s�1 in water with a SG of 1.02. The MAPs used in this study
underwent extensive toxicity assay and assessment and were
released only when environmentally sound permitting by govern-
ing agencies was obtained. It should be noted that the MAPs slowly
degrade to their silica and magnetite components.

The MAPs are one component of a system (Ruddick and Taggart,
2006, 2011) that, when coupled with a moored magnetic-collector
array, allows the direct measurement of particle dispersion within
the array domain. The magnetic-collectors are passive samplers
designed to float near the surface and vane into the current such
that any MAP suspended in the surface layer that flows through a
collector will be captured. Flume studies demonstrated a >90%

http://climate.weatheroffice.gc.ca/climateData/bulkdata_e.html?timeframe%3D1%26Prov%3DXX%26StationID%3D8990%26Year%3D2009%26Month%3D8%26Day%3D1%26format%3Dcsv
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Fig. 1. Coastline chart of the eastern Northumberland Strait between Prince Edward
Island and Nova Scotia illustrating the location-specific relative number (linearly
expanding-area circles with maximum 2450 in Murray Harbour) of MAPs captured
among the recovered collectors where the locations of collectors not recovered are
denoted by crosses.
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probability of MAP capture when passing though a collector at flow
speeds less than 0.8e1.0 m s�1. The rectangular collector tube is
nominally 35 cm long with a square aperture in which the leading
end is fitted with strong rare-earth magnets encased within plastic
tubes. The collectors used in this study were composed of two
superimposed tubes, one near surface and one below surface, each
fitted with four magnet tubes with each tube containing two
magnets (Fig. S5). The total aperture area was 86.45 cm2. The polar-
orientation of the magnets within and between the two tubes was
designed to maximise the magnetic field for particle capture.
Following a point-source release of MAPs and their dispersal over a
given period, the magnetic-collectors are recovered and the parti-
cles captured by the magnets are enumerated.

The advantage of this system lies in its ability to time-integrate
MAPs dispersing through the magnetic-collector array over various
time (days to weeks) and space (km to 100 km) scales, and thus the
ability to measure long-range dispersion. When large numbers
(order 109) are used, the MAPs function as passive particle tracers,
where the release point represents a source location and the
magnetic-collector array represents the potential dispersal domain.
In summary, the system makes use of billions of particle drifters
that can be used to estimate dispersion parameters and to make
direct comparisons with virtual particle (VP) dispersion estimates
provided by hydrodynamic models.
2.3. Hydrodynamic modelling

We used a 3D prognostic hydrodynamic modelling system
(Saucier and Chassé, 2000; Chassé and Miller, 2010) that in-
corporates a large-scale 4 km nominal-mesh model covering
the entire Gulf of St. Lawrence region within which is nested
a 200 � 200 m mesh model that envelops most of the North-
umberland Strait (Fig. S1). The low- and high-resolution models
employ the same physics, though the time-stepping of the 4 km
model is 5 min and that of the 200 m model is 30 s.

The generic code of the model contains a MelloreYamada Level
II Turbulence closure scheme, a free surface, and semi-implicit
solution techniques. There are 32 depth layers (z-levels) in the
4 km model while the 200 m model is limited to 8 z-levels (due to
the generally shallow depth of the Northumberland Strait) and has
a surface-layer thickness of 2 m. This hydrostatic model is forced by
density, tides (five primary constituents input at the boundaries of
the 4 km model), observed winds (NCEP, NOAA-CIRES Climate Di-
agnostics Center, Boulder, CO, USA), observed runoff from the St.
Lawrence River measured at Quebec City, and from other rivers,
based on monthly climatology interpolated to the model time step,
and bulk-formula heat flux. Temperature and salinity are initialised
at the beginning of a simulation and are free to evolve with time
under forcing. Themodel calculates horizontal eddy viscosities (KH)
using the parameterisation of Smagorinski (1963); i.e., it is
dependant on mesh size and on calculated horizontal velocity
shear. The calculated values are then used in the momentum and
advection-diffusion equations. Thus, the calculated horizontal vis-
cosities are not constant in time or space and a lower bound of
50 m2 s�1 is used when applied to the momentum equations to
ensure numerical stability of the model.

2.4. MAP dispersion

Approximately 30 kg (w7.4 � 109) of MAPs were released in the
surface layer (0e0.5 m) at a distance of 0.25 km from the nearest
shore in themain channel (6m depth) of Murray Harbour over a 6 h
period; 3 h either side of the local flood tide maximum at 10:48 h
ADST on 21 August 2009. Subsamples of MAPs suspended in water
of regional density were monitored over the study (dispersal)
period and the proportion that sunk out of what would have been
the surface layer was accounted for in estimating the total number
released. Magnetic-collectors had been previously deployed inside
the Harbour and over a domain of w700 km2 located near the
eastern entrance to the Northumberland Strait (Fig. 1). The moored
collector array was designed according to deployment and recovery
logistics and by using expected winds for the time of year within
the hydrodynamic model running in VP tracking mode (see below).
A total of 46 collectors were deployed and 40were recovered after a
period of 5e7 d post-release. Upon retrieval, each magnet tube was
removed from each collector and stripped of capturedMAPs, which
were placed in a counting cell and imaged (Fig. S4). The total area
(mm2) of MAPs in each calibrated image was measured using Sig-
maScan Pro (ver. 5.0). The imaged-area of MAPs captured by each
collector was converted to a particle number estimate (NMAP) by
dividing the imaged-area by the area of a MAP assuming a median
diameter of 195 mm (above).

2.5. VP dispersion

Estimating the dispersion of virtual particles in the hydrody-
namic model consisted of a point-source release of 1.92 � 105 VPs
uniformly distributed throughout the 2 m surface layer in the same
location in Murray Harbour, on the same date, and over the same 6-
hour release period as the MAP release. Corresponding model
simulation results at 5, 6 and 7-d periods post-release were used to
match the same post-release periods associated with magnetic-
collector retrievals. Neither “beaching” nor vertical rise nor sink
of VPs was permitted in the model. A small-scale diffusion (Kp),
achieved by a random walk of VPs, was used to mimic the
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horizontal stirring processes that occur on scales smaller than the
200 m grid-scale model is able to resolve. We used constant Kp

values of 0, 2, 5, and 25 m2 s�1 among several simulations, as well
as minimum values of 50 and 80 m2 s�1 based on the Smagorinski
(1963) formulations that provide high eddy viscosity values only in
areas of very high horizontal shear. Thus, Kp rarely rises above
the minimum KH of 50 m2 s�1 used in solving the momentum
equations.

The model was used to estimate the total number (N) of VPs
drifting through each grid-cell by calculating an exposition number
for each grid-cell over the post-release study period (5, 6, or 7 d).
The exposition number (E) of a cell (i,j) is the sum over the indi-
vidual (k) VPs passing through a cell of the distance each VP moved
(Dm) when passing through a cell normalised by the cell length (m)
according to

Eij ¼
XNij

k¼1

�
Dmk

m

�
: (1)

2.6. MAP and VP comparison

Considering the collectors and model grid-cells as “nets” that
capture passing particles, the observed number (N) of MAPs or VPs
at a location (x) of a given magnetic-collector and its corresponding
grid-cell can each be considered generically as

N ¼ A
Z t0þT

t0
Cðx; tÞ$uðx; tÞ$dt; (2)

where A is the aperture area of a collector or grid cell at x, C is the
concentration of MAPs or VPs at x, u is the horizontal flow ve-
locity through a collector or grid-cell at x, t0 is the time of release,
and T is the integration period (the post-release collection
duration).

Following the net analogy, a magnetic-collector acts like a small
stationary net that vanes into the flow with an aperture dimension
of 13.3 � 6.5 cm, and a model grid-cell as a similar net with a
surface-layer grid-cell aperture dimension of 2 � 200 m. To
compare the MAP collector results (NMAP) with the model exposi-
tion results, Eij was converted to number to account for the differ-
ences in the two measurements (number vs. exposition and
collector aperture vs. grid-cell aperture). Accordingly, virtual par-
ticle number (NVP) from exposition in each grid-cell, Eij, associated
with each collector location was calculated as

NVP ¼ Eij$
Acoll

Acell
$
NMAPR

NVPR
; (3)

where Acoll is the magnetic-collector aperture area, Acell is the grid-
cell aperture area, NMAPR is the number of MAPs released at the
point source in Murray Harbour, and NVPR is the number of VPs
released at the same location in the model. Each collector-specific
NVP estimate was based on the average NVP of that collector-
specific grid-cell NVP and the eight surrounding grid-cell NVP

values. With the proportionality constants in Equation (3), the MAP
estimates from the magnetic-collector system allow a direct com-
parison with the VP estimates from the model as they are essen-
tially measuring the same thing e the time integral of particles
passing through a location over time.

As none of theNMAP andNVP observations were consistent with a
normal distribution, they were logarithmically transformed to
obtain distributions more consistent with normality for regression
purposes. All uncertainties are presented as 95% confidence
intervals.
2.7. Estimating dispersal kernels

While Equation (2) expresses the MAP or VP captures at each
spatial location, the observations can be used to obtain a probability
density function that can be considered an estimate of the dispersal
kernel. The resulting estimates are equivalent to sampling the two-
dimensional dispersal kernel at a finite number of locations over a
given sampling period T and its associated environmental condi-
tions. There may be variability associated with, for example, the
neap-spring tidal cycle and (or) season, and replicate releases or a
long-term steady release (or multiple model simulations) would be
required to obtain an ensemble and (or) time averaged dispersal
kernel.

Although dispersal is typically two-dimensional, heteroge-
neous, and anisotropic (Gawarkiewicz et al., 2007), our preliminary
analyses indicated that bothNMAP andNVPwere primarily a function
of in-water distance L between the source and the collector (or
model grid cell) locations, allowing estimation of a greatly simpli-
fied single-variable dispersal kernel (e.g., Gerrodette, 1981; Largier,
2003). The estimates of the observed number (N) of MAPs or VPs
are presented in a semilog manner (logeN as a function of L) and
consistent with the linear relation logeN ¼ b � aL. The linear rela-
tion is equivalent to an exponential function, n(L) ¼ eb$e�aL, where
n represents the observed number of MAPs or VPs at distance L,
with an e-folding scale of a�1. In this case the e-folding scale is
simply the length scale where n(L) decreases by a factor of e.

We define the dispersal kernel p(r, q; t) as the probability density
function describing the spatial distribution of MAPs or VPs origi-
nating from the source location (Nathan et al., 2008). For the sake of
definitiveness, p(r, q; t) is the probability density function
(unitsm�2) of a particle that is released at r¼ 0, t¼ 0 at any position
(r,q) and later time t, where r and q are the radial and azimuthal
coordinates, respectively, in the two-dimensional horizontal plane.
We wish to estimate the dispersal kernel p from the observation of
MAP or VP integrated capture numbers that are approximated as
n(L) ¼ eb$e�aL. If we consider p to be a radially-symmetric function,
and ignore the subtlety that the domain includes land, then we can
take the in-water distance L as equivalent to radius. We denote
P(r � L;T) as the probability that a particle is located at a distance L
or greater from the release point at time T, so that

Pðr � L; TÞ ¼
Z N

L
r dr

Z 2p

0
dq pðr; q; TÞ; (4)

where P on the left is the probability that we can estimate using the
data and p on the right is the probability density function (i.e., the
dispersal kernel) that we want to determine. We assume a radially
symmetric distribution and that we can estimate the left hand side
of (4) functionally by

PðLÞhPðr � L; TÞznðLÞ
Neff

; (5)

where n(L) is the regression formula for the fit to NMAP or NVP that is
n(L) ¼ eb$e�aL and Neff is the “effective” number of MAPs or VPs in
the dispersal domain and, particularly for MAPs, is essentially un-
known (addressed in Discussion); however, we can rearrange
Equation (5) to

PðLÞ ¼
 

eb

Neff

!
e�aL; (6)

where the rational coefficient is a constant. We require that
P(L ¼ 0) ¼ 1 which is the same as P(r � 0;T) ¼ 1; i.e., the probability
of a particle being somewhere is equal to 1, and thus
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eb ¼ 1: (7)
 
Neff

!

We use Equation (7) as opposed to the regression coefficient b
and the actual number of MAPs (NMAPR) or VPs (NVPR) released
because NMAPR is not necessarily the number of MAPs available for
capture within the dispersal domain. Thus, we have

PðLÞhPðr � L; TÞze�aL: (8)

Substituting Equation (8) into Equation (4) yields

e�aL ¼
Z N

L
r dr

Z 2p

0
dq pðr; q; TÞ; (9)

and as we are assuming p is radially symmetric, then p(r, q;
T) ¼ p(r;T), and Equation (9) becomes

e�aL ¼ 2p
Z N

L
r pðr; TÞ dr: (10)

Taking the derivative of both sides of Equation (10) with respect
to L gives

d
dL

�
e�aL

�
¼ 2p

d
dL

0
@Z N

L
rpðr; TÞ dr

1
A; (11)

and

�ae�aL ¼ 2pð � LpðL; TÞÞ: (12)

Solving Equation (12) for p and multiplying both sides by 2pL
gives an observational estimate of the dispersal kernel:

2p L pðL; TÞ ¼ ae�aL: (13)

Fitting to an exponential function and normalising in this
manner has three advantages: first, the simple form with a single
parameter (a) is conceptually and analytically useful while retain-
ing accuracy, second, the paucity of observations in the large-
distance “tail” of the distribution does not significantly affect the
estimation of the dispersal kernel, and third, the analytic function
allows estimation of expected results for locations that were
not experimentally sampled. Note that the method above can
be applied to any function of in-water distance, not just an
exponential.

In the results below we plot 2pL$p(L) rather than p(L) because
the probability of transport from the source (L ¼ 0) to all distances

within a specific distance D is given by
Z D

0
2p L pðLÞ dL, where the

quantity 2pL p(L) is also known as the “dispersal distance kernel” e
the probability density function of distance travelled from the
source, regardless of direction (Nathan et al., 2012). The dispersal
kernel has an implicit dependence on time T; i.e., it represents an
estimate arising from the environmental conditions present during
the study period, andwill depend on the timing and duration of the
experiment.

3. Results

3.1. MAP dispersion

MAPs were captured by each of the 40 magnetic-collectors that
were recovered 5e7 days post-release; i.e., there were no zero
returns, though 6 collectors were not recovered (Fig. 1). The spatial
distribution of the missing collectors did not appear systematic and
we assumed that themissing data did not compromise our analyses
and interpretation thereof. The majority of MAPs among collectors
were concentratednear the release locationwithinMurrayHarbour.
Beyond the Harbour, the particle concentrations among collectors
were elevated along the coast and particularly to the south andwest
along the Murray Head peninsula (Fig. 1). In general, though not
necessarily systematically, fewer MAPs were collected toward the
northeast with increasing distance from the release location. In the
following comparisons ofMAPs andVPs, the reader is reminded that
the modelled estimates of VPs can potentially span a much larger
domain that extends beyond that defined by the collector array.

3.2. VP dispersion

Modelled VP positions at discrete same-phase times over
several tidal cycles, up to w2.5 days post-release, using various Kp

values (Fig. 2), reflected several aspects of the observed MAP con-
centration distribution illustrated in Fig. 1, particularly along the
Murray Head peninsula. We selected the Kp values shown to first
illustrate streakiness from just tidal influences (0 m2 s�1), a value
that is typically used among modellers (2 m2 s�1), as well as a value
large enough such that VPs encompass the entire collector array
(80 m2 s�1). With no small-scale diffusion (Kp ¼ 0 m2 s�1), the
“streaky” nature of the VP field was apparent as it evolved with the
tide, transporting the particles south and west along the peninsula
(T0) and then folding and reversing north-eastward but further
offshore (þ2 tidal cycles) and then essentially repeating the tidal
evolution (þ4 tidal cycles), as well as reflecting particle advection
with the tidal residual to the northeast. When Kp was increased to
2 m2 s�1, over the same tidal evolution, the particles became more
dispersed to the south and northeast of Murray Head peninsula.
Where previously the streaks began to fold and reverse, the
increased Kp produced a more dispersed field with relatively large
concentrations aligned with the residual current. Using a minimum
Kp of 80 m2 s�1, the resultant dispersive effect was more apparent
over the same tidal evolution, though now with particles being
dispersed further from the localised concentration.

The VP exposition number estimates (Fig. 3), based on a con-
stant Kp of 25 m2 s�1 reflected various aspects of the observed MAP
capture number estimates among collectors (Fig. 1). The rationale
for choosing a Kp value of 25 m2 s�1 is detailed below. A visual
comparison of Figs. 1e3 indicates that the model effectively re-
flected the general features of the observed MAP field. Within the
confines of the collector array, the model tended to show low
exposition numbers of VPs in areas where the magnetic-collectors
captured low numbers of MAPs (typically offshore), as well as high
exposition numbers of VPs in areas where the collectors collected
high numbers of MAPs (in Murray Harbour and along the Murray
Head peninsula). VP exposition number estimates, based on the
other constant and minimum Kp values, illustrated patterns similar
to those addressed above, except that the VP dispersion fields did
not encompass the entirety of the MAP dispersion field at constant
Kp values of 2 and 5m2 s�1 (Fig. S6, S7). At minimum Kp values of 50
and 80 m2 s�1, the VP fields filled the entire model domain, at least
to the north and east (Fig. S8, S9).

3.3. MAP and VP comparison

The relation between NVP and NMAP, based on a constant Kp of
25 m2 s�1 (Fig. 4), indicated a significant (p < 0.001) and generally
linear (r2 ¼ 0.49) relation, though the confidence interval around
the expected number of particles estimated by the model (NVP) in
relation to the observed (NMAP) was large. Notably, the slope
(1.00� 0.33) indicates that the relative dilution between MAPs and
VPs tends to be proportional, while the intercept (2.08 � 0.59)



Fig. 2. Coastline charts of eastern Northumberland Strait illustrating examples of the near common-phase M2 tidal cycle evolution (ordinate charts) of modelled VP dispersion from
the particle release point at Murray Harbour as augmented by the random walk small-scale diffusivities (Kp, abscissa charts) of 0 (aec), 2 (def), and minimum of 80 m2 s�1 (gei).
Discrete times on the abscissa charts evolve from T0 ¼ 13.5 h post-release to two (T0 þ 24.8 h) and four (T0 þ 49.8) subsequent tidal cycles.
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indicates that the model predictions exceeded the MAP captures by
two orders of magnitude. In addition, NVP tended to over-estimate
NMAP as the collector locations progressed from the near field in-
side Murray Harbour, along the coast and nearshore open water,
and progressively under-estimated into the far field offshore open
water. This pattern was apparent among all relations between NVP

and NMAP based on the other Kp values (Fig. S10 e S13), despite the
fact that the slopes of the relations were sensitive to the Kp values
used in the model simulations (Fig. 5, Table S1). At small Kp values,
the slopes were >1 (1.66 � 0.62 at Kp ¼ 2 m2 s�1 and 1.44 � 0.53 at
Kp ¼ 5 m2 s�1), and at higher Kp values, the slopes were <1
(0.81 � 0.25 at Kp ¼ 50 m2 s�1 and 0.69 � 0.20 at Kp ¼ 80 m2 s�1).
Based on the 95% confidence intervals around the slope estimates
at each of the various Kp values used, it appears that on average, the
appropriate Kp for modelling this system over the study period lies
somewhere around a constant 25 m2 s�1 that is bracketed by a
constant 5 m2 s�1 and a minimum 50 m2 s�1 Kp.

3.4. Estimating dispersal kernels

The number of MAPs captured by the collectors decreased
exponentially with in-water distance, L, from the release point
(Fig. 6a). The resultant dispersal kernel for the purely passive par-
ticles provided an estimated e-folding scale of 7.15 km with lower
and upper 95% confidence limits of 5.19 and 11.44 km, respectively
(Fig. 6b).

The uncertainties associatedwith the decrease inNMAP at small L
are large and may be related to a relatively rapid and constant
proportional decay near the release location within Murray
Harbour, followed by a slower and proportionally constant decay
thereafter (Fig. 6a). The 95% confidence intervals around 2pL
pMAP(L) (not shown) were smaller than those around NMAP, since
pMAP is obtained from a derivative of NMAP, and is affected only by
uncertainty in the slope a, whereas both the slope and intercept,
and their respective uncertainties, affect NMAP. Since the un-
certainties associated with the intercept (L ¼ 0) were large (�0.70;
approximately an order of magnitude), NMAP(L) was not well esti-
mated within the Harbour. Evidence for this is demonstrated by
assessing the decrease in NMAP as a function of L for the collectors
located only within the Harbour, wherein the slope was estimated
at �1.21 �1.41 (Fig. S14, S15), relative to�0.14 � 0.05 (Fig. 6a) with
all collectors included.

The number of VPs estimated among themodel simulations also
decreased exponentially with L for each of the Kp values used
(Fig. 7a, S16aeS19a, Table S2), and thus were in general agreement
with the decrease in MAPs (Fig. 6a). As Kp increased, the e-folding
scales for each of the VP dispersal kernel estimates also increased
(Fig. 8), with the model again exhibiting a sensitivity to Kp, as in
Fig. 5. When taking the 95% confidence intervals into account, we
can conclude that an appropriate Kp for modelling this system, on
average, over the study period, lies somewhere between the min-
imum Kp values of 50 and 80 m2 s�1, which is greater than is
indicated when using the NMAP and NVP comparison above (Fig. 5).
The NVP regression on L from the model simulation using a mini-
mum Kp of 80 m2 s�1 (Fig. 7a) provided an e-folding scale estimate
of 5.57 kmwith upper and lower 95% confidence limits of 6.52 and
4.87 km, respectively, which was comparable to the e-folding scale
estimate of 3.86 kmwith upper and lower 95% confidence limits of
4.85 and 3.21 km, respectively, when using a constant Kp of
25 m2 s�1 (Fig. 7b, S18).



Fig. 3. Coastline chart of eastern Northumberland Strait and scale bar illustrating the
exposition number, Eij, of VPs (released at Murray Harbour) within each 200 m2 grid
cell across the model domain as of 09:00 h on 28 August 2009 and based on a constant
Kp of 25 m2 s�1. VPs cannot move beyond the right-hand boundary of the 200 m
resolution model domain that parallels 62�W longitude.

Fig. 4. Logelog relation of NVP as a function of NMAP where NVP modelling used a
constant Kp of 25 m2 s�1. The regression model [log10NVP ¼ 2.08 þ 1.00 log10NMAP;
r2 ¼ 0.49; p < 0.001] is illustrated by a solid line with the 95% confidence interval
around the model (dashed lines) fitted to the estimates nominally classified as near- to
far-field distances from the source inside Murray Harbour (red), along the coast of the
peninsula (green), in near-shore open waters (yellow) and offshore open waters (blue).
The 1:1 relation is illustrated as a dashed-dotted line.
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In summary, the largest difference in the e-folding scales lie in
the “tails” of the dispersal kernels, which is apparent when
comparing that derived from a constant Kp of 25 m2 s�1 with that
derived using a minimum Kp of 80 m2 s�1 (Fig. 7b). Each of the
exponential decay relations associated with the e-folding scales
derived using the other Kp values (Fig. 8) are provided in
Figures S16eS19. Again, the reader is reminded that the 95% con-
fidence intervals shown in Fig. 7b are associated with the expo-
nential function, NVP, and not with the probability density function,
2pL pVP(L).
4. Discussion

4.1. MAP and VP comparison

The spatial distributions of the MAP capture number estimates
and the VP exposition number estimates generally agree well
(Figs. 1e3) and indicate that the model predictions generally reflect
the Lagrangian particle displacements measured using the MAP
collectors. The general correspondence between the observed
particle collections and the Lagrangian predictions from the model
should allow similar model predictions to be made using different
environmental conditions, such as variation in the wind field, and
(or) release location(s) within the model domain.

In our initial MAP vs. VP number comparisons (e.g., Fig. 4) we
focused primarily on the slope of the relation because our aim
was to determine the same relative dilution between the
observed and modelled estimates (i.e., slope ¼ 1) by varying
the small-scale diffusion coefficient, Kp, in the model. A strong
MAP-VP agreement would be reflected in a linear relationship
with a slope of 1.00, and thus examining the relation is the first-
order test of the observed particle number distribution (NMAP)
and the expected particle distribution provided by the model
(NVP).

In doing so, we demonstrated a sensitivity that the model ex-
hibits to a varying Kp. We achieved a slope of 1.00 by using a con-
stant Kp of 25m2 s�1 (Fig. 5), thoughwemake no inference that this
value of Kp is the “best” value for modelling this system; this is
addressed further below concerning our estimation of the dispersal
kernels. A detailed comparison of the MAP and VP dilution rates
revealed subtle differences in the slope that appeared to be a
function of Kp. Our results indicate that the “true” Kp is varying over
time and space as illustrated by the seemingly systematic de-
viations from the regression models as the estimates progress from
the near field to the far field. If there were no or small deviations,
we could conclude we have identified the “true” Kp for this system
and study period. As this is not the case, a constant value of
25 m2 s�1 over the entire 7-day study appears to best represent a
time and space average of the small-scale diffusivity, though the
95% confidence intervals require a conservative conclusion that Kp

is varying in time and space somewhere between 5 and 50 m2 s�1;
considerably higher than the typical value of Kp we first employed
in the model. We suggest that using a typical 2 m2 s�1 value for
modelling similar physical environments is inadequate. Neverthe-
less, by examining model results among Kp values in comparison
with the MAP estimates, we have provided a practical means of
calibrating such models and (or) systems, as well as a means of
improving the models.



Fig. 6. Log-linear (a) and exponential decay (b) of NMAP as a function of distance, L
(km), from the particle release point (source). The regression model [logeNMAP ¼ 5.12e
0.14 L; r2 ¼ 0.43; p < 0.001] in (a) is illustrated by a solid line with the upper and lower
95% confidence limits around the model (dashed lines) fitted to the NMAP estimates
nominally classified as near- to far-field distances from the source inside Murray
Harbour (red), along the coast of the peninsula (green), in near-shore open waters
(yellow) and offshore open waters (blue). The exponential decay [NMAP ¼ 1.67 � 102

e�0.14 L] in (b) is illustrated by a solid line with the upper and lower 95% confidence
limits (dashed lines). The exponential decay (solid line) can be interpreted as 2pL pMAP

(right ordinate) with an e-folding scale of 7.15 km that has upper and lower 95%
confidence limits of 11.44 and 5.19 km (see Fig. 8).

Fig. 5. Slopes of the logelog regressions of NVP on NMAP (e.g., Fig. 4) as a function of
constant (2, 5, and 25 m2 s�1) and minimum (50 and 80 m2 s�1) Kp values used in NVP

modelling, each with their associated 95% confidence intervals. The dashed line il-
lustrates the 1:1 proportional change (i.e., slope ¼ 1).

Fig. 7. Log-linear (a) and exponential decay (b) NVP as a function of distance, L (km),
from the particle release point (source) based on a minimum Kp of 80 m2 s�1. The
regression model [logeNVP ¼ 11.19e0.18 L; r2 ¼ 0.84; p < 0.001] in (a) is illustrated by a
solid line with the upper and lower 95% confidence limits around the model (dashed
lines) fitted to the NVP estimates nominally classified as near- to far-field distances from
the source inside Murray Harbour (red), along the coast of the peninsula (green), in
near-shore open waters (yellow) and offshore open waters (blue). The exponential
decay [NVP ¼ 7.27 � 104 e�0.18$L] in (b) is illustrated by a solid black line with the upper
and lower 95% confidence limits (dashed lines). The exponential decay (solid black
line) can be interpreted as 2pL pVP (right ordinate) with an e-folding scale of 5.57 km
that has upper and lower 95% confidence limits of 6.52 and 4.87 km (see Fig. 8). The
exponential decay [NVP ¼ 9.64 � 104 e�0.26$L] based on a constant Kp of 25 m2 s�1 is
illustrated by the solid red line with the upper and lower 95% confidence limits
(shaded). When interpreted as 2pL pVP, the e-folding scale is 3.86 km with upper and
lower 95% confidence limits of 4.85 and 3.21 km.
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While a slope of 1.00 is achieved for the model simulation
comparison using a constant Kp of 25 m2 s�1 (Fig. 4), the model
over-estimates the MAP numbers by approximately two orders of
magnitude, and does so at all values of Kp used, no matter the slope
(Table S1). These elevations can be explained by a number of factors
that may be dependent on how the MAPs and the magnetic-
collectors behave in the field and (or) on how the model per-
forms in practice.

It is possible that there are MAP losses from the surface layer
over time due to sinking and (or) beaching; processes that are not
included in the model. It is also possible that the MAPs are so
neutrally buoyant that they are vertically mixed throughout the
water column, at least to depths greater than 2 m, by tidally- or
wind-induced turbulence, and are thus not uniformly available for
capture by themagnetic-collectors located near the surface; i.e., the
surface layer becomes increasingly diluted by losses to deeper
layers, a process that is also not included in the model. Either or
both possibilities could explain why the decay in NMAP estimates in
the Harbour (near field) is particularly rapid relative to the far field
in relation to NVP estimates (Fig. 4).

Unresolved issues in themodel, some alluded to above, may also
help explain the elevations. Although the model resolution (200 m)
is respectable for an ocean model, it does not appropriately resolve
Murray Harbour due to the size of the Harbour domain and the
presence of numerous small islands relative to the grid-cell size and



Fig. 8. Change in e-folding scales of the NVP exponential decay relations (Figs. 5 and 6)
as a function of constant (2, 5, and 25 m2 s�1) and minimum (50 and 80 m2 s�1) Kp

values with their associated upper and lower 95% confidence limits. The estimated
MAP e-folding scale of the observed dispersal kernel (dashed line) is shown for
comparison with the upper and lower 95% confidence limits (dotted lines).
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the number of open-water grid-cells. Such a limitation in resolution
likely explains why the NVP estimates in the Harbour (near field) are
near constant relative to the far field where the decay is more rapid
than that observed by the NMAP estimates (Fig. 4). In addition, the
model does not capture some events well, such as Hurricane Bill,
because the wind-field forcing is not highly resolved due to the
nature of the wind-field data used for forcing. Finally, as demon-
strated above, the sensitivity of the small-scale diffusion applied to
the VPs in the model may contribute to the slope elevations. The
sensitivity can be rationalised, but not fully explained, by consid-
ering mechanisms such as shear dispersion by tidal currents that
would be experienced by the MAPs but are not simulated by the
model. This sensitivity is addressed below.

4.2. Streakiness, shear dispersion, and model sensitivity to Kp

A physical mechanism that explains the dependence of the
model predictions on Kp is illustrated in Fig. 2, which shows the
cumulative effect of Lagrangian tidal advection, the dominant
stirring mechanism in the region and thus the model. It is clear that
dispersion is stronger along the shore to the south and west of
Murray Harbour andweaker to the north and the east. It is apparent
that the VPs disperse in a complex pattern with numerous streaks
that effectively double in number with each tidal cycle, partially
due to the continuous release of the VPs over 6 h. Increasing Kp

from 0 m2 s�1 to 2 m2 s�1 and to a minimum of 80 m2 s�1 causes
diffusion to fill the gaps between the streaks while retaining a
similar overall shape and location of the VP distribution. In theory,
an advection-diffusion process could be best-fitted (or approxi-
mated) using a diffusion-only model, but this is not what has been
simulated here, as the distributional shape of the diffusing VPs
(Kp¼ 2m2 s�1 and Kp ¼ 8m2 s�1) retain traits of the advection-only
experiment (Kp ¼ 0 m2 s�1). A diffusion-only model would
demonstrate that an exceedingly high Kp value would be necessary
to achieve any meaningful far field relation with the observed NMAP

estimates; i.e., only when the appropriate advective and diffusive
processes are employed do the empirical and modelled results
begin to conform (Largier, 2003).

The streakiness observed in Fig. 2 is similar to what we have
visually observed in preliminary field trials using the MAPs. It is
also similar to that argued by Garrett (1983) and observed by
Ledwell et al. (1998) for isopycnal stirring in the deep-ocean ther-
mocline, caused in our case by lateral stirring in the tidal currents
(Ridderinkhof and Zimmerman, 1992). Tracer streaks are repeat-
edly multiplied by the stretching and folding action that is an
essential part of “chaotic stirring” (Aref, 1984; Zimmerman, 1986;
Ottino, 1990; Thompson et al., 1997). The processes involved in
forming the streaks and the diffusion among them are likely
responsible for the sensitivity in the model predictions to Kp; thus,
the comparisons between NMAP and NVP serve to help constrain the
appropriate small-scale diffusivity in the model.

The details of mixing behaviour depend on the transverse streak
spacing (Lw 1e5 km), the tidal period (T¼ 12.42 h), and the small-
scale diffusivity. We thus expect that model sensitivity to the small-
scale diffusivity will occur as long as particles diffuse a distance < L
in T, corresponding to a diffusivity of L2/Tz 20e500m2 s�1 and not
dissimilar to the estimates employed in our model simulations
(Fig. 5). Diffusivities smaller than the above allow streakiness to
persist and diffusivities larger than the above will “smooth” over
the streaks and reduce the sensitivity.

How can the agreement between the modelled VP and the
observed MAP number estimates be affected by a model diffusivity
enhanced beyond the nominal value of 2 m2 s�1? One possibility
that is known to occur physically, but is not explicitly included in
the numerical model, is shear dispersion that arises from a com-
bination of vertical mixing and vertically sheared currents. The
MAPs have a weak positive buoyancy, with rise rate, wp, of 1e
4 mm s�1. Zimmerman (1986) gives the velocity of turbulent
eddies, w’, as approximately 5 � 10�3 ut, where ut is the horizontal
tidal current velocity, so that if ut is 0.5 m s�1, then w0 would be
w2.5 mm s�1, comparable to the rise rate of the MAPs. It is there-
fore possible that the tidal currents in the Strait generate suffi-
ciently strong turbulence to mix the MAPs within the water
column, and if so mixed, the MAPs would experience shear
dispersion, while in themodel, the VPs are constrained to the upper
z-layer (0e2 m). Zimmerman (1986) reviews models and obser-
vations for the tidal vertical shear contribution to dispersion and
shows that the equivalent (effective) corresponding horizontal
diffusion coefficient is typically in the range of 10e25m2 s�1, with a
strong spatial dependence related to depth and tidal current vari-
ation. We have shown above that this is sufficient to cause lateral
diffusion among streaks within a tidal period.

In summary, the slow rise rate of the MAPs could allow them to
be vertically mixed in the water column by tidally-generated tur-
bulence and thus they would by dispersed by vertical shear. The
VPs are constrained to remain in the modelled surface layer and are
unaffected by shear dispersion. While we have demonstrated
reasonable agreement between NVP and NMAP, it was improved by
imposing a small-scale diffusivity in the model large enough to
simulate constant and spatially uniform shear dispersion.

4.3. Estimating dispersal kernels

We have demonstrated the ability of a new, empirical method to
directly estimate the passive component of a particle dispersal
kernel in a marine system. As the null model of propagule or par-
ticulate contaminant dispersal, the physical connectivity estimates
can be applied, in the geographic area in question, to any passive
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planktonic organism or particulate resident in the surface mixed
layer. In this study region we estimated that the MAP-based
dispersal kernel has an e-folding scale of 7.15 km, which is
approximately twice the width of Murray Harbour, and approxi-
mately the same size as its length. This scaling argument implies
that there is considerable potential for retention in the Harbour
that may favour local endemic populations, invasive species, or
contaminants that may find their way into the Harbour via shipping
or other vectors. For example, if the dispersal kernel in Equation
(13) above is represented as p(L) ¼ (2p L)�1ae�aL, when a�1 is
w0.85 km, similar to the e-folding scale of the dispersal kernel
within Murray Harbour (i.e., Fig. S14, S15), the probability
of passive retention within a distance D and over time T

is
Z D

0
2p L pðLÞ dL ¼

Z D

0
ae�aLdL ¼ 1� e�aD. Assuming that D is

7 km for the length of the Harbour, the probability of retention is
0.9973. Note that this estimate does not address directed swim-
ming ormortality or subtleties associatedwith directional dispersal
or irregular coastline. Similar arguments imply that exported
propagule or particulate concentrations diminish rapidly over
relatively short length scales. For another example, at a distance of
28 km from the source (i.e., 4 e-folding scales of 7.15 km in our
study for the entire domain), the number of particles would fall to
1/e4 ¼ 1.80% of the original number, and at 42 km to 0.20%, thus
limiting dispersal and hence connectivity over large distances. We
have also shown that pMAP(L) is not well estimated within the
Harbour (Fig. S14, S15) if near field Harbour estimates are used
along with the far field estimates in determining the dispersal
kernel because the e-folding scale is much lower at w0.85 km.
Thus, concentrations in the Harbour decrease far more rapidly with
distance relative to outside the Harbour, thereby further limiting
connectivity. These empirical estimates of dispersal can provide
context in the dispersal of a localised invasive species. For example,
the retention of the invasive vase tunicate (Ciona intestinalis) within
Prince Edward Island harbours (e.g., Kanary et al., 2011) may impact
local bivalve aquaculture industry, and larval dispersal ability has
implications to management of both the industry and the invasion.
Thus, we conclude that estimating dispersal kernels in coastal en-
vironments requires very careful consideration of semi-enclosed
and nearshore waters separately from open-ocean waters as the
consequences may be considerable.

Although linear regression models (e.g., Figs. 6 and 7) have the
advantage of a simplified single-parameter dispersal kernel that
represents the observations reasonably, although not perfectlywell,
any experimental observations of MAP captures can be similarly
used to yield the probability of spatial transfer from source (release)
to sink (collector) locations, giving direct observations of the
physical component of the dispersal kernel. In complex physical
geometries, with non-uniform flows and non-uniform and aniso-
tropic dispersion, the dispersal kernel could take virtually any (one-
or two-dimensional) form, and could reasonably be expected to
depend on sink location; i.e., as a two-dimensional function. In light
of this, it is quite remarkable that given the complexity of Murray
Harbour and eastern Northumberland Strait, a region of anisotropic
and non-uniform dispersion confounded by complex shoreline ge-
ometry, that a simple exponential function gives a reasonable rep-
resentation of the dispersal probability by using a single parameter;
the e-folding scale. It is additionally surprising and gratifying that
the dispersal kernel estimated using the numerical model is simi-
larly simple, and that the residual variability (deviations from the
linear fit) are similar in the model and in the observations.

The magnetic-collectors sample a single realisation of the
probability density function, as illustrated above (Figs. 1 and 3), to
within a normalisation factor required to give an integrated
probability of 1. The collector array design in our study demon-
strated remarkable efficacy in that the bulk of the distribution ap-
pears to have been sampled with sufficient detail to capture the
structure, and yet with sufficiently smooth results that over-
sampling was not apparent. The smooth results are likely associ-
ated with the time-integration estimate that the collectors provide,
because any streaks of MAPs that occur at intermediate stages of
dispersal are swept through collectors, and thus the collectors yield
MAP numbers that are not sensitive to their precise locations. The
collectors sampled a single dispersal realisation under specific
environmental conditions, and this results in a sampling uncer-
tainty that is difficult to quantify without knowledge of the two-
dimensional dispersal kernel. Additionally, having collectors at a
finite number of locations in the far field, where probabilities are
small and areas are large, makes computation of the appropriate
kernel difficult. For these reasons, we chose to present our dispersal
kernels in one-dimension. Further, pMAP and pVP are primarily a
function of in-water distance, L, so that available observations are
more parsimonious for estimating a one-dimensional dispersal
kernel than a two-dimensional one. We suggest that the simplified
one-dimensional dispersal kernel may not be unique to the chosen
release location or environmental conditions, but may be repre-
sentative of the Northumberland Strait region where similar tidal
and residual currents are present. Analyses of other MAP studies in
this region will allow us to test this hypothesis.

As in the MAP-VP comparisons above (Fig. 5), the VP e-folding
scales also exhibit sensitivities to the small-scale diffusion value
(Fig. 8). To approach the MAP e-folding scale estimate, the model Kp

had to be raised to at least a minimum value of 50 m2 s�1. This
reflects our inference above that there may not be one “best” value
of Kp when modelling this system. Further, we determined that
nearly the entire exponential decay relation (including the 95%
confidence limits) for a constant Kp of 25 m2 s�1 envelops that for a
minimum Kp of 80 m2 s 1 (Fig. 7b). The majority of the difference
between the two lies in the “tails” of the dispersal kernels, implying
that the far field is important for estimating connectivity when
using dispersal kernels. For example, the likelihood of survival and
establishment of a larva may fall within one e-folding scale dis-
tance, say <5 km, using either kernel estimate (e.g., Fig. 7b), but
potential establishment lies beyond that scale distance in the far
field “tails” where the pVP estimates diverge. Dispersal rates,
particularly those of invasive species, are extremely sensitive to the
“tail” of the dispersal kernel, and it is often within this “tail” that
modelling dispersal becomes problematic (Skarpaas and Shea,
2007; Nathan et al., 2008). We note that when using any value of
Kp in themodel, theMAPs have a greater e-folding scale than the VP
estimates provide (Fig. 8). When sub-grid dispersion is employed,
others have found that it not only achieves a more realistic model
(e.g., Döös et al., 2011), but that models exhibit a sensitivity to this
parameterwhen using values similar to those in our study (e.g., Xue
et al., 2008). This suggests, along with our results, that many hy-
drodynamic models may be too spatially conservative in their
dispersal predictions. Sub-grid-scale parameterisations are notwell
understood and thus not well modelled, and this is a key area in
need of improvement when using numerical models (Werner et al.,
2007).

Many numerical hydrodynamic models are frequently used as a
central tool in MPA planning, invasive species mitigation efforts,
the prediction of ecosystem response to changing environmental
conditions, source-sink estimation (connectivity), and the dispersal
and impact of contaminants. Accordingly, spatially conservative
estimates of dispersion, and thus connectivity, may have serious
implications and (or) consequences for extant or planned conser-
vation andmanagement. The life-history characteristics of a species
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in question, or the source and (or) volatility of a contaminant, will
need to be examined in the context of the physical connectivity
when making conservation and management decisions. Using such
models as first approximations can be highly informative for initial
planning purposes and for urgent mitigation responses; however,
we argue that when dispersal is a core feature of an issue, such
models should not be used to dictate planning and response until
they can be tested for the planning and response purposes, and not
only the purpose for which they (the models) were originally
designed. We suggest that dispersal and model assessment is
examined here in a new, strongly Lagrangian manner, and that the
MAPs can achieve a quantitative, empirical estimate of the
dispersal kernel that has never before been accomplished.

Wunsch (2010) noted that progress in linking empirical obser-
vations and model predictions requires combining the information
provided by the observations (e.g., the MAPs) with similar infor-
mation provided by modelling ocean dynamics (e.g., the VPs). Ac-
cording to Wunsch (2010), the combination represents a rare but
interdisciplinary field where the practitioners must have a grasp of
the powers and pitfalls of the data, the models, and the dynamical
theory. He further notes that circulation modelling emerged from
geophysical fluid dynamics and computer science when empirical
data were sparse and compared with unrealistic numerical models,
leading to a community that is disconnected from understanding
the observational system. In this context, we hope that our study
has made an advance toward linking the empirical with the
theoretical.

4.4. Advantages of the MAP and magnetic-collector system

TheMAP andmagnetic-collector system overcomes many of the
issues associated with conventional tracing technologies while
providing a direct quantitative measure of dispersal. MAPs can be
designed to a specified density and for different shapes and sizes.
They are relatively inexpensive, do not degrade easily, andmixtures
from different release-sources can be identified. They can be
collected over long periods and at large spatial scales using the
simple magnetic-collector technology. This system can address a
plethora of problems, including invasive species dispersion, egg
and larvae dispersion and connectivity, sediment transport, the
dispersal of propagules at deep-sea vents, transport and dispersal
in aquaculture settings, and the tracing of contaminants, effluent,
and river plumes, as well as sewer, storm-water, floc, produced
water, and erosion tracing. For a given area, a single experiment can
be useful for testing the Lagrangian predictive capabilities of a
hydrodynamic model, and the model can thereafter be used with
greater confidence to conduct complementary dispersion studies;
however, model comparisons under a single set of conditions are
not sufficient to confidently extrapolate results to other conditions.
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