Supplementary Material

Materials and Methods

Temperature, length-at-day, development-time and evacuation data were extracted from data tables and/or by digitizing figures retrieved from the published literature (Table S1). The Atlantic cod data (Brander 1995) were an exception where the stock-specific weight-at-age estimates were converted to stock-specific length-at-age estimates by using literature-based stock-specific weight-at-length regressions (Kohler et al. 1970; Daan 1974; O'Brien and Monroe 2001; Lilly et al. 2003; Marshall et al. 2004). The latter regressions revealed one general (model) relation for the 19 cod stocks across their N Atlantic range (Fig. S4). The validity of this strong relation was tested by examining the mean annual length- and weight-at-age estimates for northern cod (North Atlantic Fisheries Organization, statistical Division 2J3KL) over the period 1977 to 1992 inclusive (n=551). This examination showed that the observed 2J3KL data fit within one standard deviation of the general model (Fig. S4).

Where average daily temperature estimates were not provided, they were estimated using linear interpolation of the weekly, monthly, annual etc. estimates. The *GDD* estimate at day n (°C•d) was calculated as:

$$GDD(n) = \sum_{i=1}^{n} (T_i - T_{Th}) \cdot \Delta d, \quad T_i \ge T_{Th}$$

$$\tag{1}$$

where T_i is the mean daily temperature at day *i*, T_{Th} is the predetermined threshold temperature and Δd is a set time step (sampling frequency, i.e. 1 d). Initially, T_{Th} was set at 0°C (see below). All *GDD* and *LaD* time series were validated for normality using a Shapiro-Wilk test (α =0.05). Variation in size (*LaD*) and variation in physiological time, *GDD*, were compared and quantified through linear regression for each dataset, producing a relation of the form:

$$LaD = \beta \cdot GDD + \alpha \tag{2}$$

where β is the slope (mm (°C•d)⁻¹) and α is the intercept (mm) of the *LaD* at *GDD* relation (see Table S2). The above methods were applied in a similar manner to resolve *LaD* as a function of calendar time. For the evacuation trials (Fig. 6) variation in normalized stomach fullness index (*nSFI*) and variation in *GDD* were compared and quantified through linear regression for each dataset, producing a relation of the form:

$$nSFI = \theta \cdot GDH + \rho \tag{3}$$

where θ is the slope (°C•h)⁻¹ and ρ is the intercept (mm) of the *GDD-nSFI* relation (see Table S3). All statistical analyses were performed using Matlab (Version 6.5, MathWorks Inc.). Statistical significance was generally evaluated at α =0.05.

As the Celsius scale is an arbitrary one (McLaren 1995), any growth model including temperature must include an estimate of the threshold temperature (T_{Th}). When a growth model uses a mean temperature there is an implicit assumption that $T_{Th} = 0$ °C. This can be avoided by using an absolute temperature scale based on heat energy (i.e. Kelvin, the S.I. unit for thermodynamic temperature). However, integration of Kelvin temperature results in smoothing

(due to the relatively large values each datum in the series will have; e.g. 10°C=283.15°K) of fluctuations in the GDD series (°C) that parallel those of the LaD series. Thus, it is more physiologically-relevant to choose a temperature scale and threshold that correspond to the minimum limit of the organism and its environment; e.g. perhaps near -2°C for marine fish. We tested the incorporation of various threshold temperatures (T_{Th} ; °C) in the GDD metric (relative to the 0°C default) by examining the change in the coefficient of determination (r^2) in the LaD at GDD function when varying T_{Th} between -20 and 20°C in 1°C increments. This range more than captured all of the variation in T_{Th} that we discovered in the published literature. Only those data offering a variation in temperature and accompanied by time were included (20 datasets). While the location of the maximum r^2 varied greatly among datasets, each described a characteristic and rapid decay in the r^2 at some positive T_{Th} (Fig. S5). The location of this rapid decay was defined as the maximum useable threshold arbitrarily, but conservatively, determined at the point of a 10% decrease in explained variation relative to the maximum r^2 (i.e. maximum explained variation in LaD by GDD); here termed the " $10\%T_{Th}$ ". While there is considerable variation in the value of the $10\%T_{Th}$ among datasets, two interesting patterns were revealed (Fig. S6). First, warm-water snapper (*Pagrus auratus*) exhibited a higher (Wilcoxon Rank Sum, n=20, P=0.0076) geometric mean $10\%T_{Th}$ = 19.3°C than did cold-water fish (grayling *Thymallus thymallus*, Atlantic salmon Salmo salar, herring Clupea harengus) with geometric mean $10\%T_{Th}$ =12.2°C; possibly the result of life-history adaptation to their environments. Second, the $10\% T_{Th}$ does not fall below 4°C. Interestingly, and perhaps meaningfully, this is the average temperature below the thermocline in temperate marine waters (Dando and Burchett 1996) and is the temperature of maximum density in freshwater. Changing the 10% criterion to some lower value results in a similar pattern with a slightly lower elevation.

Supplementary Figures

Fig. S1. Scattergram showing the residuals (mm) from the modified VBGF method (Dion and Hughes 2004, filled squares) with those from the GDD method (open circles) for the 2000-year-class of age-0+ Arctic grayling. Mean square errors for the modified VBGF method and GDD method are 15.1 and 6.0 mm² respectively. The residuals from the modified VBGF method (Dion and Hughes 2004) demonstrate a significant trend (r^2 =0.66; P<0.0001) while the residuals from the GDD method do not (P=0.66).

Fig. S2. Carapace length-at-day (*C-LaD*, mm; filled circles) and *GDD* (°C•d) for juvenile red king crab (*Paralithodes camtschatica;* Stevens 1990). Linear regression (solid line; *C-LaD*=0.011•*GDD* – 10.6mm; r^2 =0.92; P<0.0001) and 95% prediction intervals (dashed lines) are provided. Stevens (1990) used a log_e-linear fit to these data, presumably to avoid the arguably meaningless negative y-intercept provided here. This pattern <u>may</u> reflect an unresolved thermal constant related to early development.

Fig. S3. Length-at-day (mm) as a function of *GDD* (°C•d) for juvenile Atlantic salmon (Jones et al. 2002). Open circles and solid line denote data included in *GDD-LaD* relation (*LaD*=0.019•*GDD*+83.6mm; r²=0.97; P<0.0001), and filled circles those excluded. Dashed and dotted lines at 124 ± 14 mm (standard deviation) illustrates the approximate size-at-smoltification for fish in this area (Hutchings and Jones 1998).

Fig. S4. Weight-at-length relation used to convert weight-at-age (kg) to length-at-age (cm) for Atlantic cod data. Thin dotted lines denote length-weight relations for 17 cod stocks across the North Atlantic (Kohler et al. 1970; Daan 1974; O'Brien and Monroe 2001; Lilly et al. 2003; Marshall et al. 2004). Thick solid lines denote mean length-at-weight parameters \pm standard deviation (W=8.9x10⁻⁶· $L^{3.03}$). Filled circles are mean annual length- and weight-at-age estimates for northern cod (North Atlantic Fisheries Organization, statistical Division 2J3KL) over the period 1977 to 1992 inclusive (n=551).

Fig. S5. Variation in the coefficients of determination (r^2) in the *LaD* at *GDD* relation due to changing the threshold temperature (T_{Th}) over the range between -20°C and 20°C for three example datasets covering the full range in the position of the maximum r^2 (arrow): a) Arctic Grayling (Alaska, Dion and Hughes 2004), b) European grayling (France, Mallet et al. 1999), c) snapper (New Zealand, Francis 1994). * indicates position of $10\%T_{Th}$; i.e. a 0.10 decrease in r^2 relative to the maximum.

Fig. S6. Position of the $10\%T_{Th}$ for cold-water (filled circles; n=17) and warm-water (open circles; n=3) fish where cold-water fish are those inhabiting a mean temperature of 10 ± 3 °C and warm-water fish are New Zealand snapper inhabiting 17 ± 2 °C. Dashed line indicates $10\%T_{Th}$ =4°C.

Supplementary Tab Table S1: Summary	les 7 of published da	ata used to exa	amine the GDI	O method			
Spacios	Location	Source,	GDD provided?	Calculation of GDD			
Species	(field/lab; environment; location)	length (mm), data secured	(Threshold temperature, T_{Th})	Temperature (°C) obtained in source from:	daily mean temperature		
herring (<i>Clupea</i> harengus)	lab; marine;	Figure 2a	no	Figure 1	digitized		
Folkvord et al. 2004	Norway	(digitized)	no	1 1901 0 1	aiginzou		
houting (Coregonus oxyrhynchus)	lab; marine;	Figure 3	Figure 3	n/	a		
Malzahn et al. 2003	North Sea	(digitized)	(digitized) ⁺	11/	u		
Arctic grayling (Thymallus thymallus)	field; freshwater;	Figure 1e-h	no	daily temperature provided by originating authors			
Dion and Hughes 2004	Alaska	(digitized)					
minnow (Phoxinus phoxinus)	field; freshwater;	Table 2	Table 2 $(T_{1} - 5^{\circ}C)$	n/	a		
Mills 1988	Finland		$(T_{Th}-3C)$				
spider crab (<i>Mithraculus</i> <i>forceps</i>)	lab ; marine;	Table 1	no	Tab	le 1		
Penha-Lopes et al. 2006	FIOTICA						

Table S1 cont.					
red king crab (<i>Paralithodes</i> <i>camtschatics</i>) Stevens 1990	field; marine; Alaska	Figure 3 (digitized)	Figure 3 (digitized)+	n	/a
European grayling (<i>Thymalluis</i> <i>thymallus</i>) Mallet et al. 1999	field; freshwater; France	Figure 4ab (digitized)	no	Figure 4ab	digitized and interpolated
snapper (<i>Pagrus auratus</i>) Francis 1994	field; marine: New Zealand	Figure 8 (digitized)	no	Figure 4	digitized and interpolated
Atlantic salmon (<i>Salmo salar</i>) Jones et al. 2002	field; anadromous; Scotland	Figure 1a (digitized)	no	Figure 1c	digitized and interpolated
threespine stickleback (<i>Gasterosteus</i> <i>aculeatus</i>) Wright et al. 2004	lab; freshwater; Scotland	Figure 2a (digitized)	no	text, c	onstant
Atlantic cod (<i>Gadus morhua</i>) Brander 1995	field, marine, North Atlantic	Table 1	No	Table 1	interpolated
burbot (<i>Lota lota</i>) Kjellman and Eloranta 2002	field; freshwater; Finland	Figure 1b (digitized)	Figure 1b (digitized) ⁺	n/a	

Table S1 cont.				
chinook salmon (<i>Onchorhynchus</i> <i>tshawytscha</i>) Alderdice and Velsen 1978	lab; anadromous; Pacific	Table 1*	no	Table 1: Incubation temperatures 1.7 to 18.1°C
trout (<i>Salmo</i> <i>fario</i>) Gray 1928	lab; freshwater; unknown	Table 1*	no	Table 1: Incubation temperatures 2.8 to 12.2°C
Atlantic cod (<i>Gadus morhua</i>) Pepin et al. 1997	lab; marine; Newfoundland	Figure 1*	no	Figure 1: Incubation temperatures 1 to 7°C
yellowtail flounder (<i>Limanda</i> <i>ferruginea</i>) Benoit and Pepin 1999	lab; marine; Northwest Atlantic	Figure 4*	no	Figure 1: Incubation temperatures 5 to 13°C
freshwater sculpin (<i>Cottus nozawae</i>) Miyasaka et al. 2005	lab; freshwater; Japan	Figure 1**	no	text, constant

*days to hatching **stomach fullness index (*SFI*) where $SFI = \ln[\{1000 \cdot (dry \text{ mass of stomach contents})/(dry \text{ mass of fish body})\} +1].$ $+<math>T_{Th} = 0$ assumed

Table S2: A comparison of the relation between calendar time (days) and physiological time (*GDD*, °C•d) to size-at-age and egg development among the datasets we examined. Shaded values indicate statistical similarity among trials of a given study. Arrow indicates common linear relation among trials of a given study when possible.

				Ca	alendar ti	me (d)		Physiological time (GDD; °C•d)				
			Linear	regression: L	$aD = \beta \bullet T$	$ime + \alpha$		Linear	regression: La	$D = \beta \bullet G$	$DD + \alpha$	
Species and relevant figures	Descriptors	Data (n)	Slope (β) mm•d ⁻¹	Intercept (α) mm	r ²	Ρ (α=0.05)	Comparison	Slope (β) $x \ 10^{-2}$ mm^{\bullet} $(^{\circ}C^{\bullet}d)^{-1}$	Intercept (α) mm	r ²	Ρ (α=0.05)	Comparison
	constant 4°C	5	0.12	10.6	0.95	0.005		3.0	10.5	0.93	0.0074	ANCOVA
herring (Clupea	constant 12°C	6	0.38	10.7	0.98	0.0002	ANCOVA	3.2	10.8	0.98	0.0012	Similar
<i>harengus</i>) Folkvord et al.	variable 4°C,8°C,4°C	6	0.18	10.0	0.94	0.0016	Different slopes	3.1	10.2	0.96	0.0004	slopes P=0.91 Similar
2004 Fig.2abcdef	variable 12°C,8°C,12°C	6	0.33	11.0	0.97	0.0003	P<0.0001	3.3	10.6	0.98	0.0001	intercepts P=0.19
	Combined Trials	23			n/a			3.4	10.3	0.98	< 0.0001	
houting	17.5°C, fed	5	0.41	9.82	0.97	0.0018		2.3	9.8	0.97	0.0017	ANCOVA
(Coregonus	17.5°C, starved	5				0.13	ANCOVA				0.13	Similar
oxyrhynchus)	8.4°C, fed	9	0.22	10.2	0.99	< 0.0001	Different	2.7	10.2	0.99	< 0.0001	slopes
Malzahn et al. 2003 Fig. 2gh	8.4°C, starved	9				0.11	slopes P=0.0001				0.11	Different intercepts P=0.0009
	Nordale 2000	16	0.71	-89.9	0.94	< 0.0001		6.5	15.6	0.99	< 0.0001	ANCOVA
Arctic grayling (<i>Thymallus</i> <i>thymallus</i>) Dion and Hughes 2004 Fig. 2ij, 3, S1	Nordale 2001	14	0.84	-110.5	0.98	<0.0001	ANCOVA Marginal slopes P=0.032	6.2	14.7	0.98	<0.0001	Similar slopes P=0.44 Different intercepts P=0.0088
	Bona 2000	13	0.57	-72.7	0.97	< 0.0001	ANCOVA	5.0	13.5	0.97	< 0.0001	ANCOVA
	Bona 2001	14	0.80	-111.3	0.96	<0.0001	Different slopes P=0.0003	6.1	8.7	0.95	<0.0001	Marginal slopes P=0.026

Table S2 cont.

	1978 year-class	7	0.017	14.3	0.99	< 0.0001	ANCOVA	1.1	7.4	0.99	< 0.0001	ANCOVA
minnow	1979 year-class	6	0.017	15.7	0.99	< 0.0001	Similar	1.1	7.6	0.99	< 0.0001	Similar
(Phoxinus phorinus) Mills	1980 year-class	5	0.017	14.1	0.99	0.0003	slopes	1.1	7.1	0.99	< 0.0001	slopes
1988 Fig. 2kl	1981 year-class	4	0.018	11.9	0.99	0.0022	Different intercepts P=0.0014	1.1	7.0	0.99	0.0003	Marginal intercepts P=0.032
spider crah	25°C	4	0.079	0.58	0.98	0.0077	ANCOVA	0.11	0.97	0.99	0.001	ANCOVA
(<i>Mithraculus</i> forceps) Penha- Lopes et al. 2006 Fig.2mn	28°C	4	0.086	0.70	0.99	0.0015	Similar slopes P=0.41 Different intercepts P=0.01	0.11	1.0	0.99	0.001	Similar slopes P=0.86 Marginal intercepts P=0.031
red king crab (<i>Paralithodes</i> <i>camtschatics</i>) Stevens 1990 Fig. S2		11			n/a			1.1	-10.6	0.92	<0.001	n/a
	1977 year-class	10	0.28	107.5	0.95	< 0.0001		2.7	98.4	0.96	< 0.0001	
-	1978 year-class	9	0.30	-22.4	0.97	< 0.0001		2.8	84.5	0.98	< 0.0001	ANCOVA
European grayling	1979 year-class	10	0.27	-90.5	0.95	< 0.0001	ANCOVA	2.6	96.4	0.95	< 0.0001	
(Thymallus	1980 year-class	7	0.33	-295.96	0.96	0.0001	Different	3.2	56.6	0.98	< 0.0001	Different
Mallet et al	1981 year-class	6	0.20	-185.6	0.94	0.0014	P<0.0001	1.9	110.9	0.94	0.0014	P<0 0001
1999	1993 year-class	9	0.21	46.3	0.93	< 0.0001	1 0.0001	1.8	116.2	0.93	< 0.0001	1 0.0001
	1994 year-class	10	0.31	-157.3	0.97	< 0.0001		2.6	47.8	0.97	< 0.0001	
	1995 year-class	6	0.38	-361.8	0.97	0.0003		3.4	18.3	0.98	0.001	
	1987 year-class	14	0.18	50.2	0.98	< 0.0001	ANCOVA Similar	1.1	51.7	0.98	< 0.0001	ANCOVA Similar
snapper	1988 year-class	17	0.18	53.6	0.97	< 0.0001	slopes	1.1	55.5	0.97	< 0.0001	slopes
(Pagrus	1989 year-class	7	0.21	47.8	0.95	0.0002	P=0.38	1.2	70.8	0.97	0.0001	P=0.26
<i>auratus</i>) Francis 1994	Combined Trials	38	0.18	52.6	0.97	<0.0001	intercepts P=0.23	1.1	50.6	0.98	<0.0001	intercepts P=0.78

Table S2 cont.

Atlantic salmon (Salmo salar) Jones et al. 2002 Fig. S3	mean, front	15	0.10	84.9	0.84	<0.0001	n/a	1.9	83.6	0.97	<0.0001	n/a
threespine	Frongoch, front	13	0.36	5.3	0.99	< 0.0001	-	2.0	5.3	0.99	< 0.0001	
stickleback	Ayrs Burn, front	13	0.43	4.8	0.99	< 0.0001	ANCOVA	2.4	4.8	0.99	< 0.0001	ANCOVA
(Gasterosteus	Endrick, front	14	0.34	5.2	0.99	< 0.0001	Different	1.9	5.2	0.99	< 0.0001	Different
<i>aculeatus</i>) Wright et al.	Hogganfield, front	12	0.38	4.9	0.99	< 0.0001	slopes P<0.0001	2.1	4.9	0.99	< 0.0001	slopes P<0.0001
2004	Kelvin, front	12	0.41	5.6	0.99	< 0.0001		2.2	5.6	0.99	< 0.0001	
	1	2				n/a	Linear				n/a	Linear
	2	1				n/a	Regression				n/a	Regression
	3	2				n/a	P=0.10				n/a	P<0.0001; r ² =0.93
	4	3				0.16	-				0.16	
	5	3	0.37	230.5	0.99	0.028		3.7	230.5	0.99	0.028	
	6	3	0.35	192.9	0.99	0.014	-	4.0	192.9	0.99	0.014	
Atlantic cod	7	3	0.45	238.4	0.99	0.043	-	4.1	238.4	0.99	0.043	
(Gadus	8	3	0.33	317.8	0.99	0.05	-	3.3	317.8	0.99	0.05	
morhua)	9	2				n/a	-				n/a	
Brander 1995	10	2				n/a	-				n/a	
Fig. 5, S4	11	2				n/a	-				n/a	
	12	2				n/a	-				n/a	
	13	2				n/a	-				n/a	
	14	2				n/a					n/a	
	15	3				0.19					0.19	
	16	3	0.19	300.1	0.99	0.010	-	3.2	300.1	0.99	0.010	
	17	3				0.11					0.11	
	Combined Trials				n/a			3.4	280	0.93	< 0.0001	

Table S2 cont.

	1978 year-class	14		3.7	10.5	0.98	< 0.0001	ANCOVA	
burbot (<i>Lota</i> <i>lota</i>) Kjellman and Eloranta 2002	1979 year-class	6	n/a	4.8	2.9	2.9 0.99 <0.0001		Similar slopes P=0.06 Marginal intercepts P=0.04	
chinook salmon eggs (Onchorhynchu s tshawytscha) Alderdice and Velsen 1978 Fig. 4ab	Mean time to hatching	57	64.7 ± 41.9 d (±65%)	516 ± 40°C·d (±7.8%)					
trout eggs (<i>Salmo fario</i>) Gray 1928 Fig. 4ab	Mean time to hatching	14	86.4 ± 38.2 d (±44%)	493 ± 48°C·d (±9.7%)					
Atlantic cod eggs (<i>Gadus</i> <i>morhua</i>) Pepin et al. 1997 Fig. 4cd	Mean time to hatching	11	20.0 ± 5.01 d (±25.1%)	65.6 ± 29.1°C·d (±44.4%)					
yellowtail flounder eggs (<i>Limanda</i> <i>ferruginea</i>) Benoit and Pepin 1999 Fig. 4cd	Mean time to hatching	57	6.38 ± 2.05 d (±32%)		52.2 =	± 3.33°C·c	l (±6.4%)		

Table S3: A comparison of the relation between calendar time (days) and physiological time (*GDD*, °C•d) to normalized stomach fullness index (*nSFI*). Shaded values indicate statistical similarity among trials. Arrow indicates common linear relation among trials.

			Calendar time (hours)						Physiolog	Physiological time (GDH; °C•h)				
Species and relevant figures			Linear	regression: n.	$SFI=\theta \bullet T$	Time + ρ		Linear	regression: nS	$FI=\theta \bullet G$	$SDH + \rho$			
	Descriptors	Data (n)	Slope (θ) x 10 ⁻² d ⁻¹	Intercept (ρ)	r ²	Ρ (α=0.05)	Comparison	Slope (θ) x 10 ⁻³ (°C•h) ⁻¹	Intercept (ρ)	r ²	Ρ (α=0.05)	Comparison		
	2°C	7	-1.6	1.0	0.85	0.0033		-8.2	1	0.85	0.003	Similar		
freshwater	7°C	7	-3.5	0.98	0.92	< 0.0001		-4.9	0.98	0.92	0.0006	slopes		
sculpin (Cottus	12°C	6	-5.3	0.97	0.82	0.013	ANCOVA	-4.4	0.97	0.82	0.013	P=0.49		
nozawae) Miyasaka 2005 Fig. 6	Combined Trials			n/a			slopes P=0.0081	-4.6	0.97	0.88	<0.0001	intercepts P=0.92		

References for Supplementary Material

- Alderdice, D. F. and Velsen, F. P. J. 1978. Relation between temperature and incubation time for eggs of chinook salmon (*Onchorhynchus tshawytscha*). J. Fish. Res. Bd. Can. 35:69-75.
- Benoit, H. P. and Pepin, P. 1999. Interaction of rearing temperature and maternal influence on egg development rates and larval size at hatch in yellowtail flounder (*Pleuronectes ferrugineus*). Can. J. Fish. Aquat. Sci. 56:785-794.
- Brander, K. M. 1995. The effect of temperature on growth of Atlantic cod (*Gadus morhua* L.). ICES J. mar. Sci **52**:1-10.
- Daan, N. 1974. Growth of North Sea cod, Gadus morhua. Neth. J. Sea Res. 8 (1):27-48.
- Dando, M. and Burchett, M. 1996. SeaLife: A Complete Guide to the Marine Environment. Smithsonian Institution Press, Washington, D.C. 504p.
- Dion, C. A. and Hughes, N. F. 2004. Testing the ability of a temperature-based model to predict the growth of age-0 Arctic grayling. Trans. Am. Fish. Soc.**133**:1047-1050.
- Folkvord, A., Johannessen, A. and Moksness, E. 2004. Temperature-dependent otolith growth in Norwegian spring-spawning herring (*Clupea harengus* L.) larvae. Sarsia **89:**297-310.
- Francis, M. P. 1994. Growth of juvenile snapper, *Pagrus auratus*. N.Z. J. Mar. Fresh. Res. **28**:201-218.
- Gray, J. 1928. The growth of fish: III. The effect of temperature on the development of the eggs of *Salmo fario*. J. Exp. Biol. **6**:125-130.
- Hutchings, J. A. and Jones, M. E. B. 1998. Life history variation and growth rate thresholds for maturity in Atlantic salmon, *Salmo salar*. Can. J. Fish. Aquat. Sci. 55(Suppl.1):22-47.
- Jones, W., Gurney, W. S. C., Speirs, D. C., Bacon, P. J. and Youngson, A. F. 2002. Seasonal patterns of growth, expenditure and assimilation in juvenile Atlantic salmon. J. Anim. Ecol. **71**:916-924.
- Kjellman, J. and Eloranta, A. 2002. Field estimations of temperature-dependent processes: case growth of young burbot. Hydrobiologia **481**:187-192.
- Kohler, A. C., Fitzgerald, D. N., Halliday, R. G., Scott, J. S. and Tyler, A. V. 1970. Lengthweight relationships of marine fishes of the Canadian Atlantic region. Tech. Rep. Fish. Res. Bd. Can. no. 164.
- Lilly, G. R., Shelton, P. A., Brattey, J., Cadigan, N. G., Healey, B. P., Murphy, E. F., Stansbury, D. E. and Chen, N. 2003. An assessment of the cod stock in NAFO divisions 2J+3KL in February 2003. Canadian Science Advisory Secretariat Res. Doc. 2003/023. 160p.
- Mallet, J. P., Charles, S., Persat, H. and Auger, P. 1999. Growth modelling in accordance with daily water temperature in European grayling (*Thymallus thymallus* L.). Can. J. Fish. Aquat. Sci. 56:994-1000.
- Malzahn, A. M., Clemmesen, C. and Rosenthal, H. 2003. Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish. Mar. Ecol. Prog. Ser. 259:285-293.
- Marshall, C. T., Needle, C. L., Yaragina, N. A., Ajiad, A. M. and Gusev, E. 2004. Deriving condition indices from standard fisheries databases and evaluating their sensitivity to variation in stored energy reserves. Can. J. Fish. Aquat. Sci. **61**:1900-1917.
- McLaren, I. A. 1995. Temperature-dependent development in marine copepods: comments on choices of models. J. Plank. Res. **17** (6):1385-1390.
- Mills, C. A. 1988. The effect of extreme northerly climatic conditions on the life history of the minnow, *Phoxinus phoxinus* (L.). J. Fish Biol. **33**:545-561.

- Miyasaka, H., Kawaguchi, Y., Genkai-Kato, M., Yoshino, K., Ohnishi, H., Kuhara, N., Shibata, Y., Tamate, T., Taniguchi, Y., Urabe, H. and Nakano, S. 2005. Thermal changes in the gastric evacuation rate of the freshwater sculpin *Cottus nozawae* Snyder. Limnology 6:169-172.
- O'Brien, L. and Monroe, N. J. 2001. Assessment of the Georges Bank Atlantic cod stock for 2001. Northeast Fisheries Science Center Res. Doc. 01-10.
- Penha-Lopes, G., Rhyne, A. L., Lin, J. and Narciso, L. 2006. Effects of temperature, stocking density and diet on the growth and survival of juvenile *Mithraculus forceps* (A. Milne Edwards, 1875) (Decapoda: Brachyura: Majidae). Aquac. Res. 37:398-408.
- Pepin, P., Orr, D. C. and Anderson, J. T. 1997. Time to hatch and larval size in relation to temperature and egg size in Atlantic cod (*Gadus morhua*). Can. J. Fish. Aquat. Sci. 54 (Suppl. 1):2-10.
- Stevens, B. G. 1990. Temperature-dependent growth of juvenile red king crab (*Paralithodes camtschatica*) and its effects on size-at-age and subsequent recruitment in the Eastern Bering Sea. Can. J. Fish. Aquat. Sci. 47:1307-1317.
- Wright, H. A., Wootton, R. J. and Barber, I. 2004. Interpopulation variation in early growth of threespine sticklebacks (*Gasterosteus aculeatus*) under laboratory conditions. Can. J. Fish. Aquat. Sci. 61:1832-1838.