
Passive tracer reconstruction as a least-squares
problem with a semi-Lagrangian constraint:

An application to fish eggs and larvae

by G. G. Panteleev1,2, B. deYoung1,3, C. S. Reiss4 and C. T. Taggart4

ABSTRACT
A variational, data assimilation, algorithm was developed for reconstruction of a two-dimensional,

nonstationary, passive tracer field in the ocean with open boundaries and a known velocity field. The
observations, spatial smoothing terms and passive tracer conservation equation were included as
weak constraints. The algorithm was tested with simulated, nonstationary, pseudo-oceanographic
data integrated for a 7-day period. Simulations were run to determine the robustness of the algorithm
and the effect of theoretical, simulated ‘sampling events,’ mimicking the standard oceanographic
survey. We explored the sensitivity of the reconstructed tracer fields to the distribution of the
pseudo-oceanographic sampling strategy, essentially an antenna problem, and to errors in the
velocity field and the observations. The algorithm was applied to observations of silver hake
(Merluccius bilinearis) eggs and larvae obtained in August 1998 on the Scotian Shelf. Finally, the
evolution of fish eggs and larvae concentration was found. The corresponding mortality rate of fish
eggs and larvae was determined to be 0.28 day�1, with errors of 0.03 day�1. The approach, which is
quite general and could be applied to many different problems requiring minimization subject to
constraints, allows for error analysis of the results.

1. Introduction

The volume and variety of data collected in the ocean has substantially increased during
the last decade. Besides traditional measurements of temperature and salinity, new
observational and sampling techniques have enabled the collection of large quantities of
biological and hydrochemical data that can be treated as passive tracers as they are not
strongly coupled with the ocean circulation. The collection of these new data raises the
problem of how to transfer these data, usually sampled on irregular grids, onto a regular
grid, necessary for numerical analysis. One of the key interpretive questions is how to
relate the observed pattern of the scalar or tracer fields to the circulation field which may be
determined from different observations or derived from a numerical model. Some of these
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problems are simply numerical issues of spatial analysis (e.g. Daley, 1991) but others have
more to do with understanding the limitations of the tracer and circulation data. That
understanding may be formulated via mathematical models which can be used for the
analysis.

One illustrative problem for which these questions became apparent is in the reconstruc-
tion of the abundance of fish eggs and small larvae when samples are taken in a limited
region of the ocean with open boundaries. Obviously (for example Hjort, 1926) the
physical environment strongly influences the distribution of eggs and larvae and has a
substantial effect on growth and survival, effecting the concentration of organisms
observed at different times.

The simplest model equation, which describes the evolution of the concentration of fish
eggs and larvae, is the advection-reaction equation. This equation includes the direct effect
of circulation on the distribution and the influence of natural mortality on the concentra-
tion. Behavior (growth, vertical migration or horizontal swimming) of the different
organisms may be rather complicated and unknown, and it seems natural to simplify the
problem and use the advection-reaction equation, with mortality rate (m) alone, as a first
step in predicting the abundance and distribution of animals in time. Such a model
description may be relevant to the more general problem of determining the influence of
the circulation on any passive tracers, such as hydro-chemical water properties, water
pollution etc. In this paper, we concentrate our attention on biological passive tracers (e.g.
plankton, fish eggs and small larvae).

On the continental shelf, biological sampling of eggs and larvae taken as part of an
oceanographic survey can require cruises that last days to weeks. If a mathematical model
can describe the evolution of the passive tracer field during the period of sampling, then the
reconstruction of passive tracer fields from the observations can be viewed as a standard
inverse problem with constraints implied by the model (Marchuk, 1975; Wunsch, 1978;
Thacker and Long, 1988). It can be formulated as either a “weak” or “strong” constraint
problem depending on the accuracy of the chosen model (Sasaki, 1970). In the absence of
any interaction between the different passive tracers and with a known velocity distribu-
tion, then the advection equation is linear. It is helpful that we can linearize the problem,
particularly since the biological data are usually sampled with substantial errors and
nonlinear effects may not be resolved by these data.

Coupling the physical circulation to the passive tracer equation, even for the simple
linear transport problem, can be difficult if the goal is a reliable simulation at long time
scales. Of course, long is relative, but in the coastal environment even a few days can
present a substantial challenge (Helbig and Pepin, 1998). The solution of the inverse
problem (Wunsch, 1996) implies additional difficulties that are derived from the minimiza-
tion of the cost function over the range of the initial/boundary conditions and other
independent parameters of the model. These problems require careful choice and prelimi-
nary analysis of the numerical formulation of the model and the corresponding inverse
problem. In this paper, we present a data assimilation scheme that incorporates a
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variational algorithm for the reconstruction of the distribution of passive tracers. Our
algorithm uses a Lagrangian approach that helps to minimize the number of independent
variables. Reducing the number of variables helps to simplify the minimization problem
and permits possible estimation of a posteriori errors through the direct inversion of the
dense Hessian matrix (Thacker and Long, 1988).

We tested our approach with simulated data and explored the sensitivity of the
variational approach to the distribution of “stations” in our simulated data and to the
variance of the error in the observations and the velocity field. We show that the approach
is fairly robust and can provide estimates of mortality that exhibit small error rates relative
to the variability in abundance estimates. Finally, we applied the technique to data for
silver hake eggs and larvae collected during two surveys (01 August 1998 and 07 August
1998) from Western Bank on the Scotian Shelf (Fig. 1, Reiss et al., 2000).

Although we present the technique with an application for fish eggs and larvae, with
minimal modifications it could be applied to many other tracer problems, e.g. oil spill
dispersal, fluorocarbon dispersal, and others.

The paper is organized as follows. In the next section we outline the assumptions that
underlie the proposed algorithm. In Section 3, we develop the model to be applied here and
present the variational algorithm. In Section 4 we explore the sensitivity of the proposed
method to the selection of different parameters. Then (Section 5), we apply the result to fish
eggs and larvae from the Scotian Shelf to determine the natural rate of mortality. We end
with conclusions and some discussion.

2. Assumptions

We begin with a discussion of the assumptions and develop a hypothesis that we believe
to be pertinent to the passive tracer problem. Proper specification of the problem simplifies
our task and limits the subjectivity of the algorithm as we apply it to real data. Naturally,
these particular two-dimensional assumptions are primarily relevant to our application on
the Scotian Shelf.

The first biological assumption is that the distribution of the passive tracer (e.g. fish eggs
or larvae) is essentially two dimensional in space. That is, the passive tracer distribution is
restricted to the same vertical layer, and periodic or cyclic vertical movement of the tracer
is not an important determinant of advection at short (from days to weeks) time scales. On
Western Bank (Fig. 1) this assumption has been validated for a variety of fish species
including cod, silver hake and capelin (Fortier and Villeneuve 1996; Taggart et al., 1996;
Lochmann et al., 1997; Reiss et al., 2000). In particular the eggs and small (smaller than
5 mm length) larvae of silver hake are most abundant in the upper 20 to 40 m, above the
pycnocline (Reiss et al., 2000). Any loss from this layer will appear as a mortality in our
calculation.

In this study, fish eggs and larvae were collected by tows of a standard 61 cm bongo net
(333 � mesh) that was fished from the surface to 50 m or the pycnocline and then back to
the surface (oblique). The velocity field was derived from measurements conducted at
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30 m (Panteleev et al., 2001) that roughly correspond to the average depth of the oblique
tows. Therefore, we will assume that the passive tracers (fish eggs and larvae) are
distributed in a two-dimensional horizontal plane of water above the thermocline.

The second assumption is that the mortality of the eggs and larvae do not depend on
location within the survey or the time between the two surveys (roughly seven days) since
we have no way to determine whether such variability exists. In general, previous estimates

Figure 1. Upper panel: (a) Local geography and mean interpolated velocity field for the period
01–08 August 1998. Lower panel: Expanding symbols of the concentration (numbers/m3) and
distribution of silver hake (Merluccius bilinearis); (a) eggs and recently hatched (smaller than
3 mm TL) larvae on Western Bank on 1 August 1998 (first cruise); (b) from 3 to 4 mm larvae
collected during the second cruise on August 8th (second cruise).
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of larval mortality range from 0.1 to 0.4 day�1 (Houde, 1996). On the Scotian Shelf,
Taggart et al. (1996) tracked a patch of larvae for 25 days and estimated the mortality rate
for cod and silver hake as 0.2 day�1 using an exponential mortality model. This estimate
provides a useful first guess for our analysis.

Many of the processes of larval transport and evolution are difficult to define or are
poorly known, e.g. the natural mortality and diffusion. It is, therefore, difficult to generate
meaningful solutions for this problem, even if we know one or another of the terms, e.g. the
velocity field, quite well. We will assume that our model describes the evolution of the
passive tracer with some accuracy. This third assumption allows us to formulate the data
assimilation algorithm through the “weak” constraint (Sasaki, 1970) rather than applying it
in a “strong,” fixed, deterministic fashion.

The fourth assumption requires us to define the typical scale of the passive tracer field.
We need to define that scale in order to introduce “bogus data” (Thacker and Long, 1988)
into the assimilation algorithm. The reason for adding bogus data is the lack of observa-
tions and the necessary regularizing of the data assimilation problem through the prior
hypothesis that defines the spatial smoothness of the larval distribution. Otherwise the
problem will be underdetermined. According to Lochmann et al. (1997) and Taggart et al.
(1996), the typical spatial scale of the larval distribution on Western Bank is about 10 km.
Our measurements of the larval concentration made on the northern flank of Western Bank
(08 August 1998, Fig. 1c) show that this spatial scale may be as much as two times greater.
Thus, we defined the length scale L � 20 km, taking into account the relatively sparse
sample grid during the first survey (01 August 1998, Fig. 1b).

The fifth assumption is that the tracer (eggs and larvae) concentration can be treated as a
stochastic �-correlated function with unknown means. This allows us to simplify the
inverse algorithm described below and formulate it in terms of the Gaussian probability
distribution (Wunsch, 1996). In general, we can use information about the spatial
cross-correlation function, but its estimate demands large amounts of data, and given the
generally limited data available, this function is often known rather imperfectly. It is clear
that we need to develop approaches that will work in the absence of ‘perfect’ knowledge of
the spatial fields for which we have data.

3. Methodology

a. The model

In accord with the assumptions discussed above for the description of the passive tracer
field (concentration of fish eggs and larvae), we used the following two-dimensional
equation:

�C/�t � � · �uC� � mC � DC	C � 0 (1)

where C is the larval concentration, DC the diffusion coefficient and m the mortality
coefficient. With a known velocity field u, and given initial C( x, y, t 
 0) and boundary
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C(b, t) conditions, the solution C( x, y, t) of this equation can be determined with
traditional finite-difference methods (Roache, 1998).

We know that the solution C( x, y, t) can be approximated with a set of some functions
Ck advected by the flow field u as a Lagrangian particle, moving with the fluid elements.
This approximation may be written as

C�x, y, t� � �
K

Ck. (2)

We will call Ck a function-particle. In case of zero mortality (m 
 0) and diffusion DC 

0, the simplest choice of Ck will be a function defined as a constant of some radius scale
and zero elsewhere. But if mortality and diffusion are nonzero, as is generally the case,
then we must account for these processes in our determination of the form of the
function-particles. So, we define Ck as the analytical solutions to the diffusion equation in
cylindrical coordinates:

�C/�t � DC��2C/�r2 � r�1�C/�r� � mC (3)

Ck � Ck
0�1/�t � t0�� exp��r2/4DC�t � t0�� exp��mt� (4)

where r is a radius and t0 is some period of time introduced to avoid infinite values of the
concentration at the initial time t 
 0. That period can be also interpreted as the time
needed for the initial growth and diffusion of eggs spanning the initial point. For our runs,
which are seven days long, we used t0 
 8 days and DC 
 5 � 105 cm2 s�1. The
horizontal diffusion coefficient was estimated from a number of trajectories of the particles
started and integrated in the local nonstationary velocity field using the approach utilized
by Sanderson and Booth (1991) and Bauer et al. (1998). Our results revealed an error of
approximately 20–30% in the definition of the horizontal diffusion coefficient. According
to (4), this inaccuracy leads to an increase of 2–4 km in the spatial scale (2 � DC � (t0 �
t))0.5 of the function Ck, while the typical advection over one week gives a scale of
30–40 km. Therefore, the influence of possible errors in the horizontal diffusion coeffi-
cient is relatively unimportant. Our solution should not be strongly sensitive to errors in the
diffusion coefficient over a period of seven days.

With a known velocity field u and a specified set of function-particles with initial
amplitudes Ck

0, Eqs. (2–4) allow us to determine an approximate solution to the passive
tracer evolution described by Eq. (1). The solution will be a function of the initial
amplitudes Ck

0 and the mortality coefficient m, which will form a vector of independent
parameters for our model (Ck

0, m).
The accuracy of the proposed approximation will depend on the initial number of

function-particles and the length of the integration time. We do not provide a theoretical
analysis of the relation between the number of function-particles and quality of the
approximation (i.e. Eqs. 2–4), but do run simulations to show that for real-world
application, we can start with an appropriate number of function-particles and obtain
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satisfactory results. Mathematically, this procedure is similar to finding the solution to Eq.
(1) by separating the physical processes, as in operator splitting (Press et al., 1992).

b. Inverse algorithm

The solution to Eq. (1) by the superposition of the individual solutions to Eqs. (2–4)
allows us to formulate the inverse problem in terms of the corresponding vector of
independent parameters for our model (Ck

0, m). Since the solution to Eqs. (2–4) is
approximate, we formulate the inverse problem in terms of ‘weak’ constraints (Sasaki,
1970). We minimize the following cost function

F � �
i
1

4

fi, (5)

f1 � �
n
1

N

g1�xn, yn��C � C*n�
2, (6)

f2 � �
S,t
0,t
T

g21�x, y, t��Cxx
2 � Cyy

2 �ds � �
B,T

g22�b, t�Cbb
2 � g23�B, t�Ctt

2dbdt, (7)

f3 � �
S,t
0

g3�x, y��C/�t � ��uC� � mC � DC	C�2ds

� �
b,t

g3�x, y��C/�t � ��uC� � mC � DC	C�2dbdt,

(8)

f4 � �
k
1

K

g4 exp���Ck
0�, (9)

where C is the concentration, K is the number of particle-functions (Eqs. 2–4), C*n are the
larval measurements at the locations with coordinates ( xn, yn), and N the number of
measurements. S, B and T indicate the two-dimensional space, one-dimensional boundary
and time domain respectively. Each function fi, i 
 1, 2, 3 plays its own role and
respectively provides the necessary agreement to the data, smoothness and dynamical
correspondence of the minimization function. The function f4 helps to avoid nonphysical
negative values of larval concentration. It is possible to exclude the function f2 from the
cost function F if the number of data N is equal to the number of particle-functions K.
Otherwise, penalizing the smoothness plays the role of the ‘bogus’ data (Thacker and
Long, 1988). g4 and � are constant coefficients. g1, g21, g22, g23, g3 are weight functions
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that according to control theory (Wunsch, 1996) are the inverse covariance of the
corresponding physical data.

The normal way to specify these covariance functions is through preliminary analysis of
the observations and incorporation of prior knowledge of the relevant dynamical processes.
For the applications presented below, we used the simplest ideas about the quality of the
observations and typical features of the larval distribution. We specified the relative
measurement error �data, the time scale TC, the space scale LC, the time-dependent mean
concentration C*tn

and the maximum initial and final concentrations Cin, Cfi. Using these
parameters we defined

g1�xn, yn� � �C*tn�data�
�2, (10)

g21�x, y, 0� � �LC
2 /Cin�

2, g21�x, y, T� � �LC
2 /Cfi�

2, (11)

g22�b, t� � �2LC
2 /�Cin � Cfi��

2, g23�b, t� � �2TC
2 / �Cin � Cfi��

2. (12)

The introduction of initial Cin and final Cfi concentrations and the time dependent mean
concentration C*tn

were necessary because high mortality rates influence the absolute
values and as a consequence the spatial smoothness of the larval concentration. The
sensitivity of the different variational approaches to errors in the spatial scale LC has been
investigated in numerous papers (e.g. McIntosh, 1990; Panteleev et al., 2002). These
analyses show that reasonable errors in the specification of the spatial scale LC do not
influence the results. As discussed by McIntosh (1990), this is one of the more attractive
feature of the variational data assimilation approach.

The definition of g3 is rather subjective especially as we do not know how well Eq. (1)
describes the relevant processes. Taking into account typical errors of �eq 
 0.2 for the
approximate solution of (1) with (2–4), we defined

g3 � ��eq � 0.5 � �Cin � Cfi�/TC��2. (13)

g4 and � have no physical meaning and were defined empirically based upon the results of
sensitivity testing.

With known mortality m, the cost function F depends only upon the control vector q 

(Ck

0)T consisting of the concentration Ck
0 of initial and inflow particles. The mortality

coefficient may also be treated as an unknown variable and in that case q 
 (Ck
0, m)T.

Mortality will be estimated from measurements of concentration directly. If we do have
estimates of mortality it seems natural to add the additional functions

f5 � g5�m � m*�2, (14)

f6 � g6 exp���m�, (15)

whose goal is to attract m to the prior estimated value and to avoid nonphysical negative
values of mortality.

This constraint essentially limits our search to regions where we expect m to lie. g5, g6
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and � can be defined as g1, g4 and �, respectively. As will be shown below, specification of
the mortality as a part of the control vector offers the potential for a carefully constrained
determination of natural mortality.

c. Testing

The Lagrangian and semi-Lagrangian approaches have received much attention during
the past three decades (Sawyer, 1963; Robert, 1981; Pellerin et al., 1995). The most
attractive feature of the Lagrangian approach is the relatively large time step of the
integration of the model in comparison with numerical schemes realized in Eulerian
coordinates. However, there are two problems associated with the Lagrangian approach.
The first is the redistribution (divergence or convergence) in time of the initially uniformly
distributed particles. The second is the difficulty of remapping the Lagrangian solution
onto the Eulerian grid. Both of these problems demand complicated numerical algorithms.
If these numerical algorithms are not computationally efficient, then there is little to be
gained.

The efficiency of the data assimilation algorithm strongly depends on the successful
minimization of the cost function, and therefore results in additional requirements for the
model formulation. The two key issues are the dimension of the independent variables
(control vector) and the level of numerical noise in the model solution. The first follows
from the fact that the computational effort required for the minimization of the cost
function is proportional to N2, where N is the dimension of the control vector. The second
is explained by the complicated form of the cost function and the difficulty in finding the
global minimum in the presence of numerical noise and/or a high frequency component in
the model solution. The dimension of the minimization problem becomes especially
important if we need to calculate errors in the solution. Determining the errors is
accomplished by inverting the N-by-N dimensional Hessian matrix associated with the
cost function (Tziperman and Thacker, 1989), and may be extremely complicated for
large N.

We illustrate the application of the semi-Lagrangian model (Eqs. 2–4) by comparing its
results with those of Eq. (1) solved on an Eulerian grid. For the comparison, we used a
stationary nondivergent velocity field similar in spatial scale to that observed for Western
Bank (Fig. 1) and defined by the superposition of three harmonics:

� � �
k
1

3

Ak sin ��xkx � �yk y� (16)

u � ���/�y (17)

v � ��/�x (18)

where Ak is the amplitude and the sine functions represent the spatial harmonics on the
regular grid with �x 
 3 km and �y 
 3.3 km. This velocity field was also applied to other
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numerical experiments described below. Figures 2a and 2b show the spatial structure and
corresponding trajectories of the Lagrangian particles in the velocity field defined by
(16–18). Note that the proposed variational technique does not assume stationarity
hypothesis and nonstationary velocity fields can be easily applied.

The Eulerian finite-difference solution of Eq. (1) was obtained by using a conservative
second-order in space and leap-frog in time (�t 
 0.7 hours) finite-difference scheme
(Roache, 1998). The dimension of the Eulerian grid was 32 � 42 
 1344. We set the initial
concentration of the passive tracer to be zero outside of the study region (Fig. 3a).
Therefore, zero boundary conditions were specified along boundary points where particles
flow into the domain. Boundary conditions for the outflow portions of the domain were
extrapolated from the internal points. Figure 3a illustrates the evolution of the Eulerian
solution over seven days.

The corresponding semi-Lagrangian solution was obtained via the following procedure:
a) Each grid point from the initial Eulerian distribution (Fig. 3a, 0 days) was treated as

exact ‘data.’ This gives 1344 ‘measurements’ but a large number of these measurements
were equal to zero, and so only 1000 measurements were used.

b) The trajectory of 1000 particles initialized in points corresponding to the data were
calculated using a standard Runge-Kutta fourth order accuracy algorithm (Roache, 1998).
Some of these trajectories are shown in Figure 2b.

c) The set of optimal initial amplitudes Ck
0 was calculated as a function that minimized

the sum of the functions (6), (8) and (9). Note, that Eq. (7) may be ignored because the
number of particle-functions is equal to the number of data extracted from the Eulerian
solution.

The final semi-Lagrangian solution (Eqs. 2–4) is shown in Figure 3b. We note that the
semi-Lagrangian solution does not have the noise observed in the finite-difference solution
because of the weak divergence of the velocity field and imperfect reflection from open
boundaries.

Figure 2. (a) The velocity field defined by Eqs. (16–18); (b) Typical trajectories of the Lagrangian
particles in the velocity field shown in (a).
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There are some disadvantages with this approach. The principal drawback is the
practical difficulty of specifying an infinite number of particles in order to obtain the
desired accuracy for the solution to Eq. (1) over a long time period, when the spatial scale
of the function-particle 2 � (DC(t � t0))0.5 becomes comparable with the typical velocity
spatial scale. This can be particularly important if the flow field has strong spatial
gradients. Another problem is the error that develops when mapping the analytical solution
onto the Eulerian grid. Such errors can lead to violation of the mass conservation property
of the analytical solution (Eqs. 2–4). However, with careful calculation of the integral
� Ckdxd y over the Eulerian grid these problems can be minimized. Furthermore, the
imprecise specification of the initial and boundary conditions can be problematic, although
for the short integration times, when the number of specified functions (Eq. 4) can be
limited without much loss of accuracy, this drawback is not critical.

For quantitative analysis of the semi-Lagrangian algorithm we need to define the ‘true’
solution of Eq. (1). The semi-Lagrangian solution is smoother, but violates mass conserva-
tion properties being mapped to the Eulerian grid (see above), while the Eulerian
finite-difference conservation scheme is free of this drawback. The limitations of the
finite-difference scheme (dispersion, banding with negative values) are well known and
will be amplified with an increase in the time integration period. For our example,
however, where the spatial extent of the grid is about 200 km and the velocity scale is about

Figure 3. (a) Evolution of the finite-difference Eulerian solution of Eq. (1); (b) Evolution of the
semi-Lagrangian solution defined by Eqs. (2–4). Time-dependent error in the dynamical equation
�eq, averaged correlation ~e,l and the error �e,l between the Eulerian and Lagrangian solutions.
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10 cm/sec, the advective lifetime is T 
 L/U � 20 days, so for the 8-day modeled period
the difference between the finite-difference and true solution is small and despite its
imperfections we can consider the Eulerian solution as the ‘true’ solution. Meanwhile,
comparison of the plots (Fig. 3) shows that both the Eulerian and semi-Lagrangian
solutions are highly correlated.

We can also consider a measure of similarity between the Eulerian and Lagrangian
solutions in terms of their correlation ~e,l and error �e,l defined respectively as

~e,l � �
t,x,y

�Ce � Ce��Cl � Cl�dxdydt�
� ��

t,x,y

�Ce � Ce�
2dxdydt �

t,x,y

�Cl � Cl�
2dxdydt� 0.5

(19)

�e,l � ��
t,x,y

�Ce � Cl�
2dtdxdy��

t,x,y

Ce
2dtdxdy� 0.5

(20)

where Ce and Cl are the Eulerian and semi-Lagrangian solutions. For the case illustrated in
Figure 3, the introduced correlation and error were about 0.95 and 0.07, respectively.

As a quantitative measure of the character of the semi-Lagrangian solution, we
introduced an error function into the solution of Eqs. (2–4) as an approximation of the
finite-difference solution to Eq. (1):

�eq � ��
t,x,y

�C/�t � ��uC� � mC � DC	C�2dtdxdy��
t,x,y

��C/�t�2dtdxdy�0.5

. (21)

The error is approximately 0.1–0.15 at the beginning and increases to 0.25 by the
seventh day (Fig. 3).

4. Sensitivity studies

a. Antenna sensitivity

We carried out many test studies in order to determine the characteristics of our
approach. Our primary goal was to reconstruct the nonstationary passive tracer field with
data analogous to observations derived from a shelf-scale oceanographic survey in a region
with open boundaries and a known velocity field. To begin, we generated the Eulerian
solution to Eq. (1) with a stationary velocity field (Eqs. 16–18) and initial conditions as
shown in Figure 3a. Additionally, we simulated the constant inflow of a passive tracer
along the eastern boundary. The final result with zero mortality (m 
 0) is shown in
Figure 4a.
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Figure 4. Results showing the sensitivity of the reconstruction to the sampling approach, testing the
influence of the survey design. (a) —the original finite-difference solution. (b), (c) and (d)—
reconstruction of the passive tracer field based on data extracted according to zigzag line on the left
panels. The empty circles denote the starting point of the sampling line. Time-dependent error in
the dynamical equation �eq, the averaged correlation ~e,l and error �e,l between the Eulerian and
Lagrangian solutions are shown.
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Following different zigzag lines, corresponding to cruise tracks, we extracted 42
‘observations’ from the passive tracer field and imposed the relative measurement error
�data 
 0.1. The distance between ‘stations’ was chosen to enable resolution of the spatial
structure of the observed phenomena. Following Eq. (10), each observation has a
prescribed error covariance of (C*tn

�data)2. We applied three different sampling grids to
explore the sensitivity to ‘cruise’ path: (i) with samples taken from north to south (opposed
to the mean current), (ii) with samples taken from south to north (following the mean
current), and (iii) with samples made following a star pattern.

The sampling lines and the results of the passive tracer reconstruction (Figs. 4b, 4c and
4d) show that there is substantial sensitivity to the survey path and structure. The typical
size of the control vector (the number of initialized initial and inflow particles) was about
3000. The best reconstruction was achieved in case (i) where the correlation ~e,l and error
�e,l between the Eulerian and semi-Lagrangian solution were 0.84 and 0.24, respectively.
The worst reconstruction (~e,l 
 0.68, �e,l 
 0.5) was obtained in case (iii), perhaps
because of difficulty in obtaining reliable information about the inflow passive tracer with
measurements made in the direction of the mean current (case iii). The reconstruction of
the inflow tracer in the southeastern part of our region (Fig. 3c) supports this interpretation.
Similar results were obtained by Panteleev and Semenov (1988) who found that sampling
along the Gulf Stream was much improved if the survey moved in a direction opposed to
the current direction.

The efficiency of the star pattern scheme (correlation 0.77, Fig. 4d) is also reduced when
sampling took place in a direction opposed to the prevailing current. Its advantage, in
comparison with the current-following scheme, is a consequence of the observations taken
in the southeastern corner halfway through the survey. In general, these results confirm
other work that suggests that sampling should be conducted in a direction opposed to the
prevailing circulation. Taking into account these results, we suggest that prior analysis of
the mean circulation should be used to construct more efficient sampling grids for
biological and hydro-physical studies. Such an analysis provides an opportunity to
optimize the sampling strategy when there is information on the circulation.

An interesting result of this preliminary analysis is that errors in the transport equation,
represented by �eq, do not depend upon the sampling scheme and lie within the range
0.25–0.30. Similar values were obtained from all of our numerical experiments, and so we
will not discuss this parameter further.

b. Errors in the passive tracer data

The data simulated in the previous subsection were extracted from the finite-difference
solution and can be treated as perfect, or exact, data. Of course, all observations have some
errors which can strongly influence the output. Therefore, it is important to investigate the
sensitivity of the proposed algorithm to errors in the observations.

For this analysis we contaminate the known, ‘perfect,’ observations with 10, 20, 30 and
40% noise and apply our algorithm with an appropriately modified weight function g1. The
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results of this experiment (Fig. 5) show that the proposed algorithm has a filtering property
such that the output has only a weak dependence upon the level of the observational error.
Figure 5 shows that the �e,l and the correlation ~e,l between the reconstructed and the

Figure 5. Results showing the sensitivity to errors in the observations of the passive tracer data:
reconstruction of the passive tracer field based on data contaminated by error at (a) 10%, (b) 20%,
(c) 30% and (d) 40% amplitudes. Time-dependent error in the dynamical equation �eq, the
averaged correlation ~e,l and error �e,l between the Eulerian and Lagrangian solutions are shown.
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Eulerian solutions remain nearly constant and equal 0.24–0.3 and 0.72–0.76, correspond-
ingly.

These experiments show that the algorithm is quite robust in the face of errors in the
observations. This property of the algorithm allows us to use it even in cases where the
errors in the data are not well defined or the errors are suspected to be large. Errors in
oceanographic data are often large and meaningful; estimation of the true errors of the
observations is difficult at best (Taggart and Frank, 1991).

c. Errors in the velocity field

For the application developed here, we assume that the velocity field is known, so error
analysis of the velocity field is not crucial for our discussion. Nonetheless, it is instructive
to consider the potential influence of errors in the velocity field on the final distribution of
the passive tracers.

The velocity field is a superposition of three harmonics (Eqs. 16–18). Therefore, the
sources of possible errors in the flow field can be split into errors of the phase and
amplitude of these harmonics. Figures 6a, 6b, 6c and 6d represent some examples of the
reconstructed passive tracer field based on imperfect velocity fields. The modifications
include changes in phase (Figs. 6a and 6b) and amplitude (Figs. 6c and 6d) of the
harmonics which make up the velocity field, with deviations of about 5% (Figs. 6a and 6c)
and 20% (Figs. 6b and 6d), respectively. As expected, the algorithm is rather sensitive to
errors in the flow field (Fig. 6). This result is a logical consequence of the primary role of
the advective terms in Eq. (1). At the same time, even if the velocity field applied differs
from the true field by up to 20%, many of the features are conserved in the reconstructed
passive tracer field.

d. Mortality estimates

The mortality rate coefficient m can be included as part of the control vector. Therefore,
mortality can be defined in an optimal way using the available passive tracer, current data
and the actual estimated decrease in the passive tracer as described by the third term of
Eq. (1).

Errors in the observations will influence the final mortality estimates, so we investigated
the relationship between a pre-defined mortality rate and errors in the passive tracer
observations. As before, we began with the finite-difference solution to Eq. (1) with m 


0.1 (Fig. 7a). Then we extracted 42 pseudo-measurements and contaminated them with
noise at levels corresponding to 10, 20, and 30% of their amplitude. No information about
the size of the mortality coefficient was included, but we did require that the mortality rate
should be positive. We neglected the function f5 ( g5 
 0) but used the f6 function to avoid
any negative values of mortality. The reconstructed passive tracer fields and the optimized
mortality rates (Figs. 7b, 7c and 7d) m 
 0.083 were very close to the original
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Figure 6. Results showing sensitivity to errors in the velocity field: (a), (b), (c) and (d)—
reconstruction of the passive tracer field with exact data and incorrect velocity field. The error in
the velocity field is shown on the right side. Time-dependent error in the dynamical equation �eq,
the average correlation ~e,l and error �e,l between the Eulerian and Lagrangian solutions are shown
on the left and central panels.
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Figure 7. Determination of mortality: (a) finite-difference solution to Eq. (1) with mortality m 

0.1. Reconstruction of the passive tracer field and mortality coefficient by using data contaminated
with errors with amplitudes of (b) 10%, (c) 20% and (d) 40%. Time-dependent error in the
dynamical equation �eq, the averaged correlation ~e,l and error �e,l between the Eulerian and
Lagrangian solutions are shown.
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observations and the prescribed value of the mortality m 
 0.1 even with 30% noise in the
data (Fig. 7d).

As in the previous simulations, the influence of errors in the observations on the
resulting mortality rate is rather weak. We speculate that the filtering properties of the
algorithm result from the incorporation of a semi-Lagrangian approach that strictly
(analytically) prescribes the movement, mortality and diffusion of each particle. Such
prescriptions guarantee the smoothness of the solution, thus helping to avoid numerical
noise that can result from any finite-difference scheme.

We note that the resulting mortality coefficients (m 
 0.097, 0.091, 0.083) are
smaller than the prescribed value m 
 0.1. This results from the inclusion of the
smoothing function f2 into F. This function, through the minimization of the cost function,
causes the solution to underfit somewhat the initially larger amplitude, which therefore
leads to a smaller value of the natural mortality. It may be that a different choice of the
smoothing function f2 would reduce this effect. For real applications we should take this
bias into account. Nonetheless, the bias appears to be quite small; it is only 17% when the
error in the observations is as great as 30%.

The strategy of data sampling may be different from the utilized upstream sampling if
the principal goal of the survey is to define the larval mortality. Therefore we did two
additional experiments with downstream sampling and two ‘simultaneous’ survey in the
beginning (0 day) and at the end (7.3 days) of the integration period.

The optimized solution and mortality coefficient obtained with the downstream sam-
pling data, contaminated by 10% noise, are shown in Figure 8a. The downstream strategy
gives worse results both in the reconstruction of the passive tracer and in mortality
coefficient (Figs. 7 and 8). The estimated mortality is approximately 0.07 day�1 e.g. much
worse than estimated with 30% noise incorporated into the data (Fig. 7d). This makes sense
since the variational algorithm tries to reconstruct the ‘true’ solution over the whole
domain while the ‘true’ solution can be achieved only with ‘true’ mortality. Therefore, the
downstream strategy, at least as defined in Figure 8a, has no advantages. Obviously, the
greatest accuracy in the definition of the mortality will be achieved if the ship is drifting
and periodically sampling the larvae in the ocean. However, in that case the total number of
larvae and their spatial distribution cannot be estimated.

The results from two simulations with no additional noise added (Fig. 8b) to the data
show remarkable accuracy (0.103 day�1), even though the spatial distribution of the larvae
still contains moderate errors. We believe the small error in the mortality estimate is
because of the good estimate of total larvae at the beginning and end of the survey. The
example presented in Figure 8b is obviously unrealistic but it gives guidance as to how to
plan the ‘best’ experiment. It is interesting to note that the definition of the mortality
through the fitting of the initial C0 and final C0 average concentration to the function C0

exp(�mt) gives m 
 0.015 day�1, a very poor result, a consequence of neglecting inflow
and outflow of larvae through the open boundary.
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5. Application to silver hake eggs and larvae on Western Bank

a. Eggs and larvae distributions on the Western Bank

The sensitivity studies presented above indicate that the proposed algorithm can be
applied to the reconstruction of larval fish distributions and to the estimation of the
mortality rate of those fish eggs and larvae over short periods of time (days to weeks). In
this section, we apply the algorithm to observations of fish eggs and larvae collected on and
around Western Bank, on the Scotian Shelf, during two cruises in early August 1998.
During the first cruise (1–3 August) fish eggs and larvae were collected at 17 stations, in an
approximate grid (Fig. 1a, closed squares). On the second cruise (6–8 August), larval fish
were collected along four fine-scale transects, designed to intersect fronts or other
hydrographic features around the bank (Fig. 1c). Plankton tows were made with a 63 cm
bongo net that provided tow depth and temperature monitored in real time (Reiss et al.,
2000). Tows were made obliquely to 50 m, or to 5 m from the bottom where the water
depth was less than 55 m (Hazen and Reiss, 1999). Aboard ship, samples from both sides
of the bongo nets were rinsed through a 333 �m mesh screen and the port side was stored
in 5% buffered formalin seawater. In the laboratory, eggs and larvae of silver hake
(Merluccius bilinearis) were removed, enumerated and measured to the nearest 0.1 mm
total length. The typical concentration of eggs and young larvae (smaller than 3 mm) for

Figure 8. Determination of mortality with (a)—down-stream sampling strategy with 20% noise
added to the data, and (b)—two simultaneous surveys conducted at the beginning and at the end of
the integrated period.
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the first cruise and 3–4 mm larvae for the second cruise are shown in Figures 1b and 1c.
We note that the larval concentration is very patchy, one of the reasons why direct
calculations of mortality, or calculations using strong constraints, are so difficult.

b. Features of Western Bank

A mooring array consisting of 11 moorings with a total of 25 current meters was
deployed on Western Bank from 1 August to 15–16 October 1998 (Fig. 1a). Distances
between the moorings were below the observed decorrelation length scale for this Bank
(Thompson and Griffin, 1998), 25 km. The data from the mooring array allow us to use the
time-dependent velocity measurements to define the subtidal flow fields (cf. Panteleev et
al., 2001) for the period from 1–8 August 1998.

Analysis of the current data showed that both tidal and inertial residuals for periods
longer than two days were relatively unimportant, so we included only the subinertial
currents (Panteleev et al., 2001), while taking into account the tidal and inertial variability
in our estimates of the horizontal diffusivity. The current observations were interpolated
onto a regular grid to generate a nonstationary flow field that was in general rather stable in
time (the average variance over the period was less than 8 � 10�4 m2 s�1 over the seven
day period). The seven-day mean circulation (Fig. 1a) revealed a pattern that was typical of
the circulation over Western Bank (Sanderson, 1995; Griffin and Thompson, 1996; Reiss et
al., 2000; Panteleev et al., 2001) dominated by an anticyclonic gyre with a maximum
velocity U of approximately 10 cm s�1.

The stability of the flow field is primarily the result of rather calm summer wind
conditions. The mean wind speed was about 3 m/sec. The stability of the circulation field,
and the agreement with earlier observations, supports the reliability of these observations.
As noted above, errors in the velocity field can strongly influence the results. These current
observations, made at distances shorter than the decorrelation scale of the subtidal currents,
provide a very robust circulation field for both the reconstruction of the passive tracer (eggs
and larvae) field and for the determination of the associated mortality rate that we seek to
recover.

At summer water temperatures on the Scotian Shelf, silver hake eggs hatch in 24 to
36 hrs. The growth rate of silver hake larvae is based on age data obtained from the otoliths
(ear stones) and is best described by a linear function for larvae less than 8 mm total length
(Jeffrey, 2000). We applied the simple growth rate formula and assumed that eggs hatched
24 hrs after release. The size at hatch is estimated at 1.7 mm total length, and the growth
rate is fixed at 0.18 mm day�1 (Jeffrey, 2000). For this analysis, we used eggs and larvae
smaller than 3 mm observed during the first cruise and compared the distributions to larvae
sized between 3 and 4 mm collected during the second cruise.

Some of the egg and larval collections were made before the deployment of the entire
current mooring array. Therefore, at those locations eggs and larvae must have experienced
some mortality. So, at those stations we recalculated the egg and larval concentrations by
applying a mortality rate of 0.2 day�1 with an exponential decay. This mortality is a
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commonly accepted value for natural mortality (Heath, 1992; Houde, 1996). Unfortu-
nately, these adjustments do, of course, lead to some error in the data used by the
algorithm. So, we specified a somewhat high error rate (�data 
 0.4) for these data. We set
�data 
 0.2 for the data sampled within the investigated period and region. The data were
sampled at the beginning and at the end of the study period, so it is sufficient to define just
the initial and final mean concentrations C*tin


 1000 and C*tin

 80 per 100 m3 and to

define inverse error covariance of the measurements according to Eq. (10). Because our
knowledge of mortality is rather limited, we begin with a mortality estimate of 0.2 day�1

with a standard deviation of 0.15 day�1. Taking into account the exponential influence of
the mortality on the concentration, this standard deviation is rather large and should
overlap all possible realistic values of the mortality coefficient.

The station distributions for the two surveys were rather irregular and sparse relative to a
truly desirable sampling scheme. Obviously available ship time, and other practical
constraints, limited and determined the survey design. These limitations make the data
analysis and definition of physical scales quite difficult. As mentioned above, we specified
a typical spatial scale of LC 
 20 km as a minimum scale resolved by the measurements
during the first survey. The typical initial and final scales for the egg and larval
concentrations were defined as the maximum concentration measured during the first and
second survey, respectively. The time scale was chosen to be 2.5 days based upon a scaling
of TC 
 LC/U.

c. Egg and larval distributions

Following the proposed algorithm (Eqs. 2–15), we defined the corresponding weight
functions gi and reconstructed the evolution of eggs and larvae in space and time. The
small velocity amplitude observed during the study period (see Fig. 1a) allowed us to
substantially decrease the number of particle-functions needed for the approximation
(Eqs. 2–4). Combined analysis of data and particle trajectories from several numerical
experiments showed that just 898 particle-functions would be required. So, the dimension
of the control vector q (initial concentration Ck

o and mortality m) was 899.
The initial (1 August) and final (8 August) distributions are shown in Figures 9a and 9b.

Comparison with the optimally interpolated (Gandin, 1964) larval concentration presented
in Figures 9c and 9d reveals that the variational algorithm preserves the sharp gradients
which disappear with optimal interpolation. This sharpness is a result of the nonstationarity
and the dynamic constraints utilized here. We note the difference in the locations of the
concentration maxima are in better agreement with the flow field (Fig. 1a) in Figures 9a
and 9b (maxima A1, B1 and A2, B2) than in Figures 9c and 9d. (maxima C1, C2).

The determination of the mortality rate between the two sampling periods is another
result of the proposed algorithm. Our recovered mortality rate was 0.27 day�1, somewhat
greater than the preliminary estimated value of 0.2 day�1. Note that the first-guess
mortality of 0.2 day�1 was made from data observed for a 25-day period (Taggart et al.,
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1996) and could take into account mortality of both young and relatively old larvae. Our
results are based on a shorter period and reflect the mortality of early stages which should
be larger.

Figure 9. Reconstruction of the evolution of the concentration of (a) eggs and (b) young larvae of
silver hake on Western Bank. Optimal interpolation method was used to generate the contours of
the concentration of eggs and young larvae for the (c) first and (d) second surveys. (e) Standard
deviation of the initial larvae concentration. The station locations are shown with asterisks and
circles. The letters A1, A2, B1, B2, C1, C2 denote the initial and final position of local maximums
discussed in the text.

2004] 809Panteleev et al.: Reconstruction of a passive tracer field



d. Errors

The treatment of the elements of the control vector as a stochastic �-correlated function
creates a floor for the definition of the errors of the estimated physical values. According to
Wunsch (1996), the error covariance of the corresponding elements of the control vector
can be calculated as diagonal elements of the inverse Hessian matrix H�1 
 (�2F/
�qi�qj)

�1. Several approaches have been suggested for the computation of H. The most
straightforward and simple method of calculation is to obtain its finite-different approxima-
tion (Tziperman and Thacker, 1989). Following this approach, we individually perturb the
components of the control vector q 
 (Ck

o, m)T in the vicinity of their optimal values.
After that the finite-different approximation of the Hessian can be defined as:

Hi,j � ��q��qi
F � �q��qi

F�j/2�qi. (22)

The inverse Hessian matrix was calculated through the sequential solution of N matrix
equations

HX � Ii, i � 1· · ·N, (23)

where Ii 
 (0, 0, 0. . .1, . . . 0)T is an n-dimensional zero-vector whose i-th element is
equal to one. The solutions of these equations were obtained with the generalized
minimum residuals algorithm proposed by Saad (1992). Each solution gives us one column
of the inverse Hessian matrix. The square root of the first N � 1 diagonal elements of the
inverse Hessian matrix are mapped in Figure 9e. Their physical meaning is a standard
deviation or standard error �Ck

o of the corresponding physical values e.g. estimated initial
larvae and eggs concentration Ck

o. As can be seen from Figures 1 and 9e, the minimal errors
in general correspond to data points in the southern part of the study area where there are
the most measurements and the strongest currents. This current effectively spreads
information from the point of measurement to the neighboring points according to the
velocities (Fig. 1). The error peaks are concentrated in the central part of the region where
there are the fewest measurements and where currents are weak. The weakness of the
circulation creates a situation in which information from the nearest measurements cannot
‘spread’ into other parts of the grid during the seven-day observation period. Far from the
data, the errors naturally increase but still do not exceed the prior defined expected values
discussed above (Wunsch, 1996).

The standard deviation of the mortality estimate is 0.02 day�1. Obviously, with these
two measurements of the concentration made at the start and the end of the survey, only
one estimate can be made of the mortality, so in our case 60 measurements of the
concentration should give an estimate for the standard deviation of 0.2/�30 � 0.036 day�1,
which is in rough agreement with the obtained error estimate.

We also explored the influence of possible errors in the weight function specification
upon our estimates of mortality by carrying out numerical experiments with other possible,
realistic time and space scales. For all of the experiments that we conducted, we found that
the mortality ranged from 0.25 to 0.3 day�1. Even though this algorithm exhibited a small
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bias (a persistent tendency to underestimate the natural mortality) due to smoothing terms
incorporated into the cost function, the best estimate for the natural mortality of larval fish
during this experiment was 0.28 day�1 with an error of just 0.03 day�1.

Our error estimates do not take into account possible errors in the velocity field.
Theoretically the influence of these errors may be estimated the same way, but the
time-dependent velocity field could be treated as part of the control vector. Even with a
stationary velocity field, the dimension of the control vector will be roughly three times
greater and the procedure for inverting the Hessian will demand 27 times more computa-
tional effort.

As we show above, the influence of the diffusivity coefficient is not crucial relative to
the importance of advection. In order to explore the influence of velocity errors on the
mortality coefficient, we carried out several experiments with the velocity field. These
experiments revealed that even a 20% increase or decrease of the velocity amplitude causes
a difference of only 0.01 day�1 in the optimized mortality coefficient. This relatively small
error results from the sampling strategy: two quasi-simultaneous surveys were conducted
at the beginning and at the end of the study period. These two fields play the most
important role with relatively little influence from errors in the velocity field and diffusion.

6. Discussion and conclusions

We have presented a variational algorithm for the reconstruction of a nonstationary
two-dimensional passive tracer field. This algorithm should provide the best linear
estimator for the passive tracer problem (Wunsch, 1996). Our algorithm was formulated as
a semi-Lagrangian, weakly constrained problem. The semi-Lagrangian formulation al-
lowed us to decrease the number of control variables (899 in the case of the Western Bank
study) and generated useful filtering of the tracer. The latter property allows the use of
rather noisy data, a common situation in oceanography in general, and biological
oceanography in particular. Although this algorithm has only been applied to the problem
of a single passive tracer, additional tracers could be added. The definition of the weight
functions gi, although subjective, is straightforward. For the Western Bank example, we
applied a rather simple approach to estimate these functions from the analysis of the spatial
scale and amplitude of the larval distribution. Other approaches (for example, Jameson and
Waseda (2000)) could be applied for different physical situations. At the same time,
additional information (for example about spatial anisotropy) can be taken into account and
in that case modification of the weight function gi will be necessary. Such adjustments are
likely to be particularly useful for larger spatial domains.

From the mathematical and practical point of view, the proposed method is rather simple
but requires substantial computer memory. For example, when started with 3000 particles,
our algorithm required about 200 megabytes (MB) of memory. This requirement could be
substantially decreased (by about 20–30 MB) by excluding the constraint function (8)
from (5). Our numerical experiment revealed that solutions with g3 � 0 and with g3 
 0
are similar, but minimization of (5) without (8) was less computationally demanding (by
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about 5 times). At the same time, application of the additional dynamical constraints
defined by (8) produced smaller errors �eq and better agreement between the reconstruc-
tions and the observations.

Our proposed semi-Lagrangian approach revealed several attractive features in compari-
son with finite-different Eulerian techniques. Obviously, the comparison with the finite-
different Eulerian approximation that we selected is incomplete and other more sophisti-
cated numerical schemes (Boris and Book, 1973; Smolarkiewicz, 1983) might be utilized
in order to decrease dispersion and other negative features seen in Figure 2c. For our
problem, the development of a passive tracer data assimilation algorithm that could recover
the mortality estimates from the concentration data measured with substantial errors, the
comparisons are legitimate. A more thorough comparison between our approach and data
assimilation algorithms built on sophisticated Eulerian schemes, while outside the scope of
this paper, would clearly be interesting.

We designed our algorithm for the rather simple problem of one passive tracer with
natural mortality based upon general biological principles. It should be possible, however,
to add interactions between two or more tracers, or to add more sophisticated biological
parameterization. Of course, for those more demanding problems, we might require more
data and the application of the algorithm would be more challenging. One could also apply
this algorithm in the backward sense; for example, use passive tracer information,
something like temperature and chlorophyll patterns, to estimate the surface circulation
field.

The ability to estimate the error is an attractive feature of our algorithm. Although the
velocity errors were not taken into account, our error estimates are physically reasonable
and so may be used in practice. For silver hake eggs and larvae on the Scotian Shelf in
August 1998, we also performed sensitivity tests that revealed that natural mortality lies
between 0.25 to 0.3 day�1. Given the persistent tendency of our algorithm to underestimate
this function, we suggest that the best estimate for the natural mortality for these data is
0.28 � 0.03 day�1. Houde (1996) showed that changes in larval mortality rates in the
second decimal place could have large impacts on the numbers of surviving larvae in as
short a time as 45 days. The generation of mortality rate estimates with an accuracy greater
than 0.05 day�1 would be a significant advance for biological oceanographic applications.
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