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Appendix for “Vessel collisions with whales: the probability of lethal injury based on 
vessel speed” 
 
One-dimensional collisions within the limits of the elastic and inelastic extremes 
 
Nomenclature: 
In all equations below, subscript 1 refers the vessel and subscript 2 refers to the whale. 
The prime indicates the respective post-collision momenta and velocities. The delta (Δ) 
indicates the change in either momentum (Δp) or time (Δt), and boldface indicates vector 
quantities.  
 
Force and Momentum: 
Newton’s Second Law, typically written as aF m= , where a is acceleration (m s-2), 
states that the external force (F, kg m s-2) acting on a body with mass (m, kg) is equal to 
the rate of change in momentum (p, kg m s-1) of the body where momentum is the 
product of the mass and velocity (v, m s-1): vp m= .  
 
Newton’s Second Law in terms of momentum is: 

 Eq. 1 
 
and thus: 
 

Eq. 2  
 
Conservation of Linear Momentum: 
In all collisions, elastic or inelastic, the momentum of the system is conserved; i.e. when 
no net external force acts on a system the total linear momentum of the system cannot 
change – the total momentum of the system remains constant in magnitude and direction 
(i.e. pp =′ ) that can be written as: 

Eq. 3 
 
Conservation of momentum in Eq. 3 for one dimension (1D) provides one equation with 
the two unknown post-collision velocities )and( 21 vv ′′ . We can use a second equation from 
energy considerations to solve for the unknowns in this 1D elastic collision case. Thus, 
all further development below is 1D.
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1D Elastic Collision: An elastic collision is one where the post-collision kinetic energy of 
the system is equal to the pre-collision kinetic energy of the system 
( 2121 kkkk EEEE +=′+′ ) that can be written as: 

 
Eq. 4 

 
We can rearrange Eq. 4 to: 

 
 
and by expansion and rearrangement arrive at: 

Eq. 5 
 
Rearranging Eq. 3 gives: 

Eq. 6 
 
Dividing Eq. 5 by Eq. 6 yields: 

Eq. 7 
 
and rearranging gives: 

Eq. 8 
 
Hence, for elastic collisions the relative speed of recession post-collision equals the 
relative speed of approach pre-collision. 
 
Using the conservation of momentum (Eq. 3) and Eq. 8, the post-collision velocity of the 
whale is solved as follows: 

 
and rearranging gives: 
 
 
 
that upon substitution into Eq. 8 yields: 
 
 
 
Thus, by solving for 2v′  one obtains: 
 

Eq. 9 
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Substitution of the post-collision velocity (Eq. 9) into the momentum term in Eq. 2 gives: 
  

 
Eq. 10 

 
 
 
The simplification of the Force Eq. 10 as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
that yields: 
 
 
 
 
 
By approximation: 
  
       
then: 
 
       
 
and:  
 
 
 
Thus, the forces involved in the elastic collision are the product of the mass of the whale 
and the speed of the vessel.  
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1D Inelastic Collision: A perfectly inelastic collision is one where only the momentum of 
the system is conserved and the post-collision velocities of the two colliding bodies are 
equal and move as one body at velocity v′ (i.e. 21 vvv ′=′=′ ). By using Eq. 3 the post-
collision velocity is defined as: 

 
Eq. 11  

 
The substitution of the post-collision velocity (Eq. 11) into the momentum term in Eq. 2 
gives: 
  
 
 

Eq. 12 
 
 
The simplification of the Force Eq. 12 as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
that yields: 

 
. 

 
 
 
By approximation: 

 
then: 
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and 
 

 
 
 
Thus, the forces involved in the perfectly inelastic collision are the product of the mass of 
the whale and the speed of the vessel. 
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