# coding: utf-8 # # # # # #
# # # # #

Bokeh Tutorial

#
#

00. Introduction and Setup

# # Table of Contents # # * [Tuturial Overview](#Tutorial-Overview) # * [What is Bokeh](#What-is-Bokeh) # * [What can I *do* with Bokeh](#What-can-I-do-with-Bokeh) # * [How does it work](#How-does-it-work) # * [Getting set up](#Getting-set-up) # ## Tutorial Overview # # The tutorial is broken into several sections, which are each presented in their own notebook: # # 1. [Basic Plotting Interface](01 - plotting.ipynb) # # 2. [Column Data Sources](02 - column data source.ipynb) # # 3. [Layouts, Widgets, and Interactions](03 - interactions.ipynb) # # 4. [Styling Visual Attributes](04 - styling.ipynb) # # 5. [Data Transformations](05 - data transformations.ipynb) # # 6. [Bokeh Applications](06 - server.ipynb) # # 7. [Sharing and Embedding](07 - sharing.ipynb) # # 8. [Annotations](08 - annotations.ipynb) # # 9. [Models and Primitives](09 - models.ipynb) # # 10. [High Level Charts](10 - charts.ipynb) # # 11. [Geographic Data](11 - geo.ipynb) # # 12. [Datashader: Visualizaing Large Data](12 - datashader.ipynb) # # 13. [HoloViews and Bokeh](13- holoviews.ipynb) # # Appendices # # 1. [Extra Bokeh Topics](A1 - Extra Resources.ipynb) # ## What is Bokeh # # Bokeh is a Data Visualization library for # # * interactive visualization in modern browsers # * standalone HTML documents, or server-backed apps # * capable of expressive and verstatile graphics # * can handle large, dynamic or streaming data # * available from python (or Scala, or R, or Julia, or...) # # And most importantly: # # ##
NO JAVASCRIPT REQUIRED
# ## What can you *do* with Bokeh # In[1]: # Standard imports from bokeh.io import output_notebook, show output_notebook() # In[2]: # Plot a complex chart in a single line from bokeh.charts import Histogram from bokeh.sampledata.iris import flowers as data hist = Histogram(data, values="petal_length", color="species", legend="top_right", bins=12) show(hist) # In[3]: # Build and serve beautiful web-ready interactive visualizations import utils p = utils.get_gapminder_plot() show(p) # In[4]: # Create and deploy interactive data applications from IPython.display import IFrame IFrame('http://demo.bokehplots.com/apps/sliders', width=900, height=500) # # How does it work # # # Getting set up # In[5]: from IPython.core.display import Markdown Markdown(open("README.md").read()) # Setup-test, run the next cell. Hopefully you should see output that looks something like this: # # IPython - 5.1.0 # Pandas - 0.18.1 # Bokeh - 0.12.2 # # If this isn't working for you, see the [`README.md`](README.md) in this directory. # In[6]: from IPython import __version__ as ipython_version from pandas import __version__ as pandas_version from bokeh import __version__ as bokeh_version print("IPython - %s" % ipython_version) print("Pandas - %s" % pandas_version) print("Bokeh - %s" % bokeh_version)